Rechercher






Nos tutelles

CNRS

Nos partenaires


Accueil > Publications

Publications Département B3S

2017



  • M. Amjadi, T. Hallaj, H. Asadollahi, Z. Song, M. de Frutos, et N. Hildebrandt, « Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole », Sensors and Actuators B: Chemical, vol. 244, p. 425-432, 2017.


  • H. Azouaoui, C. Montigny, T. Dieudonné, P. Champeil, A. Jacquot, J. L. Vázquez-Ibar, P. Le Maréchal, J. Ulstrup, M. - R. Ash, J. A. Lyons, P. Nissen, et G. Lenoir, « A High and Phosphatidylinositol-4-phosphate (PI4P)-dependent ATPase Activity for the Drs2p/Cdc50p Flippase after Removal of its N- and C-terminal Extensions », Journal of Biological Chemistry, p. jbc.M116.751487, mars 2017.
    Mots-clés : autophosphorylation, B3S, Cdc50 protein, Flippase, inhibition mechanism, limited proteolysis, lipid-protein interaction, LPSM, phosphatidylserine, phosphoinositide.


  • E. Baquero, A. A. Albertini, H. Raux, A. Abou‐Hamdan, E. Boeri‐Erba, M. Ouldali, L. Buonocore, J. K. Rose, J. Lepault, S. Bressanelli, et Y. Gaudin, « Structural intermediates in the fusion‐associated transition of vesiculovirus glycoprotein », The EMBO Journal, vol. 36, nᵒ 5, p. 679-692, mars 2017.
    Mots-clés : B3S, conformational change, glycoprotein, IMAPP, intermediate structures, membrane fusion, RHABDO, Vesiculovirus, VIRO, VIROEM.


  • S. E. Cannella, V. Y. Ntsogo Enguéné, M. Davi, C. Malosse, A. C. Sotomayor Pérez, J. Chamot-Rooke, P. Vachette, D. Durand, D. Ladant, et A. Chenal, « Stability, structural and functional properties of a monomeric, calcium–loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis », Scientific Reports, vol. 7, p. 42065, févr. 2017.


  • L. Cao, S. Cantos-Fernandes, et B. Gigant, « The structural switch of nucleotide-free kinesin », Scientific Reports, vol. 7, p. 42558, févr. 2017.


  • M. - F. Carlier et S. Shekhar, « Global treadmilling coordinates actin turnover and controls the size of actin networks », Nature Reviews Molecular Cell Biology, mars 2017.


  • V. Chaptal, F. Delolme, A. Kilburg, S. Magnard, C. Montigny, M. Picard, C. Prier, L. Monticelli, O. Bornert, M. Agez, S. Ravaud, C. Orelle, R. Wagner, A. Jawhari, I. Broutin, E. Pebay-Peyroula, J. - M. Jault, H. R. Kaback, M. le Maire, et P. Falson, « Quantification of Detergents Complexed with Membrane Proteins », Scientific Reports, vol. 7, p. 41751, févr. 2017.


  • J. - P. Charbonnier, E. M. van Rikxoort, A. A. A. Setio, C. M. Schaefer-Prokop, B. van Ginneken, et F. Ciompi, « Improving airway segmentation in computed tomography using leak detection with convolutional networks », Medical Image Analysis, vol. 36, p. 52-60, 2017.

  • M. Clémancey, T. Cantat, G. Blondin, J. - M. Latour, P. Dorlet, et G. Lefèvre, « Structural Insights into the Nature of Fe(0) and Fe(I) Low-Valent Species Obtained upon the Reduction of Iron Salts by Aryl Grignard Reagents », Inorganic Chemistry, vol. 56, nᵒ 7, p. 3834-3848, 2017.
    Résumé : Mechanistic studies of the reduction of Fe(III) and Fe(II) salts by aryl Grignard reagents in toluene/tetrahydrofuran mixtures in the absence of a supporting ligand, as well as structural insights regarding the nature of the low-valent iron species obtained at the end of this reduction process, are reported. It is shown that several reduction pathways can be followed, depending on the starting iron precursor. We demonstrate, moreover, that these pathways lead to a mixture of Fe(0) and Fe(I) complexes regardless of the nature of the precursor. Mössbauer and (1)H NMR spectroscopies suggest that diamagnetic 16-electron bisarene complexes such as (η(4)-C6H5Me)2Fe(0) can be formed as major species (85% of the overall iron quantity). The formation of a η(6)-arene-ligated low-spin Fe(I) complex as a minor species (accounting for ca. 15% of the overall iron quantity) is attested by Mössbauer spectroscopy, as well as by continuous-wave electron paramagnetic resonance (EPR) and pulsed-EPR (HYSCORE) spectroscopies. The nature of the Fe(I) coordination sphere is discussed by means of isotopic labeling experiments and density functional theory calculations. It is shown that the most likely low-spin Fe(I) candidate obtained in these systems is a diphenylarene-stabilized species [(η(6)-C6H5Me)Fe(I)Ph2](-) exhibiting an idealized C2v topology. This enlightens the nature of the lowest valence states accommodated by iron during the reduction of Fe(III) and Fe(II) salts by aryl Grignard reagents in the absence of any additional coligand, which so far remained rather unknown. The reactivity of these low-valent Fe(I) and Fe(0) complexes in aryl-heteroaryl Kumada cross-coupling conditions has also been investigated, and it is shown that the zerovalent Fe(0) species can be used efficiently as a precursor in this reaction, whereas the Fe(I) oxidation state does not exhibit any reactivity.
    Mots-clés : B3S, LSOD.


  • P. Cuniasse, P. Tavares, E. V. Orlova, et S. Zinn-Justin, « Structures of biomolecular complexes by combination of NMR and cryoEM methods », Current Opinion in Structural Biology, vol. 43, p. 104-113, 2017.


  • L. Dhers, N. Pietrancosta, L. Ducassou, B. Ramassamy, J. Dairou, M. Jaouen, F. André, D. Mansuy, et J. - L. Boucher, « Spectral and 3D model studies of the interaction of orphan human cytochrome P450 2U1 with substrates and ligands », Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1861, nᵒ 1, p. 3144-3153, 2017.

  • T. Di Meo, W. Ghattas, C. Herrero, C. Velours, P. Minard, J. - P. Mahy, R. Ricoux, et A. Urvoas, « αRep A3: A versatile artificial scaffold for metalloenzyme design », Chemistry (Weinheim an Der Bergstrasse, Germany), 2017.
    Résumé : αRep is a new family of artificial proteins based on a thermostable alpha-helical repeated motif. One of its members, αRep A3, forms a stable homo-dimer with a wide cleft that is able to receive metal complexes and thus appears as suitable for generating new artificial biocatalysts. Based on the crystal structure of αRep A3, two positions (F119 and Y26) were chosen and changed independently into cysteine residues. A phenanthroline ligand was covalently attached to the unique cysteine of each protein variant and the corresponding biohybrids were purified and characterized. Once mutated and coupled to phenanthroline, the protein remained folded and dimeric. Copper(II) was bound specifically by the two biohybrids with two different binding modes and, in addition, the holo biohybrid A3F119NPH was found to be able to catalyze enantioselectively the Diels-Alder (D-A) cycloaddition with up to 62% ee. This study validates the choice of the αRep A3 dimer as a protein scaffold and provides a new promising route for the design and production of new enantioselective biohybrids based on entirely artificial proteins issued from a highly diverse library.
    Mots-clés : artificial repeat proteins, B3S, Diels-Alder reaction, Enantioselective Catalysis, MIP, PF, PIM.

  • S. A. Díaz, G. Lasarte Aragonés, S. Buckhout-White, X. Qiu, E. Oh, K. Susumu, J. S. Melinger, A. L. Huston, N. Hildebrandt, et I. L. Medintz, « Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye », The Journal of Physical Chemistry Letters, p. 2182-2188, 2017.
    Résumé : Semiconductor nanocrystals or quantum dots (QDs) should act as excellent Förster resonance energy transfer (FRET) acceptors due to their large absorption cross section, tunable emission, and high quantum yields. Engaging this type of FRET can be complicated due to direct excitation of the QD acceptor along with its longer excited-state lifetime. Many cases of QDs acting as energy transfer acceptors are within time-gated FRET from long-lifetime lanthanides, which allow the QDs to decay before observing FRET. Efficient QD sensitization requires the lanthanide to be in close proximity to the QD. To overcome the lifetime mismatch issues and limited transfer range, we utilized a Cy3 dye to bridge the energy transfer from an extremely long lived terbium emitter to the QD. We demonstrated that short-lifetime dyes can be used as energy transfer relays between extended lifetime components and in this way increased the distance of terbium-QD FRET to ∼14 nm.
    Mots-clés : B3S, NANO.


  • G. Dimchev, A. Steffen, F. Kage, V. Dimchev, J. Pernier, M. - F. Carlier, et K. Rottner, « Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly », Molecular Biology of the Cell, p. mbc.E16-05-0334, mars 2017.


  • Y. Duroc, R. Kumar, L. Ranjha, C. Adam, R. Guérois, K. Md Muntaz, M. - C. Marsolier-Kergoat, F. Dingli, R. Laureau, D. Loew, B. Llorente, J. - B. Charbonnier, P. Cejka, et V. Borde, « Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion », eLife, vol. 6, janv. 2017.
    Mots-clés : AMIG, B3S, biochemistry, Chromosomes, genes, INTGEN, Meiosis, mismatch repair, Recombination, S. cerevisiae.

  • N. El Bakkali-Tahéri, S. Tachon, M. Orio, S. Bertaina, M. Martinho, V. Robert, M. Réglier, T. Tron, P. Dorlet, et A. J. Simaan, « Characterization of Cu(II)-reconstituted ACC Oxidase using experimental and theoretical approaches », Archives of Biochemistry and Biophysics, 2017.
    Résumé : 1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity.
    Mots-clés : ACC Oxidase, B3S, Copper, Density functional theory calculations, Electron paramagnetic resonance, Ethylene, LSOD.

  • E. Errasti-Murugarren, A. Rodríguez-Banqueri, et J. L. Vázquez-Ibar, « Split GFP Complementation as Reporter of Membrane Protein Expression and Stability in E. coli: A Tool to Engineer Stability in a LAT Transporter », Methods in Molecular Biology (Clifton, N.J.), vol. 1586, p. 181-195, 2017.
    Résumé : Obtaining enough quantity of recombinant membrane transport proteins with optimal purity and stability for structural studies is a remarkable challenge. In this chapter, we describe a protocol to engineer SteT, the amino acid transporter of Bacillus subtilis, in order to improve its heterologous expression in Escherichia coli and its stability in detergent micelles. We built a library of 70 SteT mutants, combining a random mutagenesis protocol with a split GFP assay as reporter of protein folding and membrane insertion. Mutagenesis was restricted to residues situated in the transmembrane domains. Improved versions of SteT were successfully identified after analyzing the expression yield and monodispersity in detergent micelles of the library's members.
    Mots-clés : B3S, FSEC, Heterologous expression, LAT, LPSM, Membrane Transport Proteins, Split GFP, SteT.


  • S. Fieulaine, R. Alves de Sousa, L. Maigre, K. Hamiche, M. Alimi, J. - M. Bolla, A. Taleb, A. Denis, J. - M. Pagès, I. Artaud, T. Meinnel, et C. Giglione, « Corrigendum: A unique peptide deformylase platform to rationally design and challenge novel active compounds », Scientific Reports, vol. 7, p. 39365, janv. 2017.

  • V. R. Figliuolo, L. E. B. Savio, H. Safya, H. Nanini, C. Bernardazzi, A. Abalo, H. S. P. de Souza, J. Kanellopoulos, P. Bobé, C. M. L. M. Coutinho, et R. Coutinho-Silva, « P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells », Biochimica Et Biophysica Acta, 2017.
    Résumé : P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB(low). Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.
    Mots-clés : ATP, B3S, colitis, MIP, P2X7 receptor, regulatory T cells.


  • N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Díaz, J. B. Delehanty, et I. L. Medintz, « Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications », Chemical Reviews, vol. 117, nᵒ 2, p. 536-711, janv. 2017.


  • F. Kage, M. Winterhoff, V. Dimchev, J. Mueller, T. Thalheim, A. Freise, S. Brühmann, J. Kollasser, J. Block, G. Dimchev, M. Geyer, H. - J. Schnittler, C. Brakebusch, T. E. B. Stradal, M. - F. Carlier, M. Sixt, J. Käs, J. Faix, et K. Rottner, « FMNL formins boost lamellipodial force generation », Nature Communications, vol. 8, p. 14832, mars 2017.


  • E. Karakas, C. Taveneau, S. Bressanelli, M. Marchi, B. Robert, et S. Abel, « Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA », Journal of Biomolecular Structure and Dynamics, vol. 35, nᵒ 1, p. 159-181, janv. 2017.
    Mots-clés : Amber, B3S, Dimethylamines, fluorescence spectroscopy, IMAPP, LBMS, LDAO surfactant, lipid kinase PI4KA, Lipids, MD simulation, micelle, Micelles, Minor Histocompatibility Antigens, Molecular Conformation, Molecular Dynamics Simulation, molecular modeling, Phosphotransferases (Alcohol Group Acceptor), Protein Binding, Proteins, Static Electricity, Surface-Active Agents.


  • P. V. Krasteva et H. Sondermann, « Versatile modes of cellular regulation via cyclic dinucleotides », Nature Chemical Biology, vol. 13, nᵒ 4, p. 350-359, mars 2017.


  • J. Lang, A. Vigouroux, A. El Sahili, A. Kwasiborski, M. Aumont-Nicaise, Y. Dessaux, J. A. Shykoff, S. Moréra, et D. Faure, « Fitness costs restrict niche expansion by generalist niche-constructing pathogens », The ISME Journal, vol. 11, nᵒ 2, p. 374-385, 2017.
    Mots-clés : B3S, MESB3S, MICROBIO, PBI, PF, PIM.

  • A. Le Dur, T. L. Laï, M. - G. Stinnakre, A. Laisné, N. Chenais, S. Rakotobe, B. Passet, F. Reine, S. Soulier, L. Herzog, G. Tilly, H. Rézaei, V. Béringue, J. - L. Vilotte, et H. Laude, « Divergent prion strain evolution driven by PrP(C) expression level in transgenic mice », Nature Communications, vol. 8, p. 14170, 2017.
    Résumé : Prions induce a fatal neurodegenerative disease in infected host brain based on the refolding and aggregation of the host-encoded prion protein PrP(C) into PrP(Sc). Structurally distinct PrP(Sc) conformers can give rise to multiple prion strains. Constrained interactions between PrP(C) and different PrP(Sc) strains can in turn lead to certain PrP(Sc) (sub)populations being selected for cross-species transmission, or even produce mutation-like events. By contrast, prion strains are generally conserved when transmitted within the same species, or to transgenic mice expressing homologous PrP(C). Here, we compare the strain properties of a representative sheep scrapie isolate transmitted to a panel of transgenic mouse lines expressing varying levels of homologous PrP(C). While breeding true in mice expressing PrP(C) at near physiological levels, scrapie prions evolve consistently towards different strain components in mice beyond a certain threshold of PrP(C) overexpression. Our results support the view that PrP(C) gene dosage can influence prion evolution on homotypic transmission.
    Mots-clés : ACTIN, B3S.


  • M. J. Llansola-Portoles, R. Sobotka, E. Kish, M. K. Shukla, A. A. Pascal, T. Polívka, et B. Robert, « Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection », Journal of Biological Chemistry, vol. 292, nᵒ 4, p. 1396-1403, janv. 2017.
    Mots-clés : B3S, carotenoid, Chlorophyll, Cyanobacteria, LBMS, light-harvesting complex (antenna complex), photosynthesis.


  • M. Ma, I. Li de la Sierra-Gallay, N. Lazar, O. Pellegrini, D. Durand, A. Marchfelder, C. Condon, et H. van Tilbeurgh, « The crystal structure of Trz1, the long form RNase Z from yeast », Nucleic Acids Research, avr. 2017.

  • P. K. Mandal, D. Shukla, V. Govind, Y. Boulard, et L. Ersland, « Glutathione Conformations and Its Implications for in vivo Magnetic Resonance Spectroscopy », Journal of Alzheimer's disease: JAD, 2017.
    Résumé : Glutathione (GSH) is a major antioxidant in humans that is involved in the detoxification of reactive radicals and peroxides. The molecular structural conformations of GSH depend on the surrounding micro-environment, and it has been experimentally evaluated using NMR and Raman spectroscopic techniques as well as by molecular dynamics simulation studies. The converging report indicates that GSH exists mainly in two major conformations, i.e., "extended" and "folded". The NMR-derived information on the GSH conformers is essential to obtain optimal acquisition parameters in in vivo MRS experiments targeted for GSH detection. To further investigate the implications of GSH conformers in in vivo MRS studies and their relative proportions in healthy and pathological conditions, a multi-center clinical research study is necessary with a common protocol for GSH detection and quantification.
    Mots-clés : Antioxidant, B3S, Brain, conformation, Glutathione, IMAPP, Magnetic Resonance Spectroscopy, molecular dynamics, nuclear magnetic resonance.


  • W. Mao, P. Daligaux, N. Lazar, T. Ha-Duong, C. Cavé, H. van Tilbeurgh, P. M. Loiseau, et S. Pomel, « Biochemical analysis of leishmanial and human GDP-Mannose Pyrophosphorylases and selection of inhibitors as new leads », Scientific Reports, vol. 7, nᵒ 1, 2017.

  • A. Mezzetti et W. Leibl, « Time-resolved infrared spectroscopy in the study of photosynthetic systems », Photosynthesis Research, vol. 131, nᵒ 2, p. 121-144, 2017.
    Résumé : Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.
    Mots-clés : B3S, Bacterial reaction centers, Carotenoids, Chlorophyll, Electron transfer, FTIR difference spectroscopy, Infrared, Kinetics, Light-harvesting systems, LPB, photosynthesis, Photosynthetic Reaction Center Complex Proteins, Photosystem I, Photosystem II, Proton transfer, Rapid-scan FTIR, Reaction centers, Rhodobacter sphaeroides, Spectroscopy, Fourier Transform Infrared, Step-scan FTIR, Thylakoids, Ubiquinone, Vibrational spectroscopy.


  • C. Mignée, R. Mutoh, A. Krieger-Liszkay, G. Kurisu, et P. Sétif, « Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction », Photosynthesis Research, févr. 2017.


  • C. Montigny, T. Dieudonné, S. Orlowski, J. L. Vázquez-Ibar, C. Gauron, D. Georgin, S. Lund, M. le Maire, J. V. Møller, P. Champeil, et G. Lenoir, « Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics », PLOS ONE, vol. 12, nᵒ 1, p. e0170481, janv. 2017.

  • D. Moonshiram, A. Picón, A. Vazquez-Mayagoitia, X. Zhang, M. - F. Tu, P. Garrido-Barros, J. - P. Mahy, F. Avenier, et A. Aukauloo, « Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy », Chemical Communications (Cambridge, England), vol. 53, nᵒ 18, p. 2725-2728, 2017.
    Résumé : We report the use of time-resolved X-ray absorption spectroscopy in the ns-μs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy)3](2+)/ a diiron(iii,iii) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(iii,iii) and reduced diiron(ii,ii) states.
    Mots-clés : B3S, LPB.

  • T. Motomura, M. Suga, R. Hienerwadel, A. Nakagawa, T. - L. Lai, W. Nitschke, T. Kuma, M. Sugiura, A. Boussac, et J. - R. Shen, « Crystal structure and redox properties of a novel cyanobacterial heme-protein with a His/Cys heme axial ligation and a per-arnt-sim (PAS)-like domain », The Journal of Biological Chemistry, 2017.
    Résumé : Photosystem II (PSII) catalyzes the light-induced water oxidation leading to the generation of dioxygen indispensable for sustaining aerobic life on Earth. The PSII reaction center is composed of D1 and D2 proteins encoded by the psbA and psbD genes, respectively. In cyanobacteria, different psbA genes are present in the genome. The thermophilic cyanobacterium Thermosynechococcus elongatus contains 3 psbA genes, psbA1, psbA2 and psbA3 and a new c-type heme protein, Tll0287, was found to be expressed in a strain expressing the psbA2 gene only, but the structure and function of Tll0287 are unknown. Here we solved the crystal structure of Tll0287 at a 2.0 Å resolution. The overall structure of Tll0287 was found to be similar to some kinases and sensor proteins with a per-arnt-sim (PAS)-like domain, rather than to other c-type cytochromes. The 5(th) and 6(th) axial ligands for the heme were Cys and His, instead of the His/Met or His/His ligand pairs observed for most of the c-type hemes. The redox potential, E1/2, of Tll0287 was -255 ± 20 mV versus normal hydrogen electrode at pH values above 7.5. Below this pH value, the E1/2 increased by ≈57 mV/pH unit at 15°C, suggesting the involvement of a protonatable group with a pKred = 7.2 ± 0.3. Possible functions of Tll0287 as a redox sensor under micro-aerobic conditions or a cytochrome subunit of an H2S-oxidising system, are discussed in view of the environmental conditions in which psbA2 is expressed as well as phylogenetic analysis, structural and sequence homologies.
    Mots-clés : ACTIN, B3S, cytochrome, D1 protein, Heme, His-Cys heme axial coordination, PAS domain, PAS-like domain, photosynthesis, Photosystem II, PS2, Tll0287, x-ray crystallography.

  • C. Pattamadilok, V. Chanoine, C. Pallier, J. - L. Anton, B. Nazarian, P. Belin, et J. C. Ziegler, « Automaticity of phonological and semantic processing during visual word recognition », NeuroImage, vol. 149, p. 244-255, 2017.
    Résumé : Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner.
    Mots-clés : Automatic activation, B3S, Bottom-up process, INTGEN, Stimulus-driven, Task-dependent, Top-down process.


  • P. Pétriacq, L. de Bont, L. Genestout, J. Hao, C. Laureau, I. Florez-Sarasa, T. Rzigui, G. Queval, F. Gilard, C. Mauve, F. Guérard, M. Lamothe-Sibold, J. Marion, C. Fresneau, S. Brown, A. Danon, A. Krieger-Liszkay, R. Berthomé, M. Ribas-Carbo, G. Tcherkez, G. Cornic, B. Pineau, B. Gakière, et R. De Paepe, « Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants », Plant Physiology, vol. 173, nᵒ 1, p. 434-455, 2017.
    Mots-clés : B3S, BIOCELL, DYNBSJ, MROP, PF, PHOT.


  • X. Qiu, J. Guo, Z. Jin, I. L. Medintz, et N. Hildebrandt, « Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning », Small, p. 1700332, 2017.

  • H. Renault, M. De Marothy, G. Jonasson, P. Lara, D. R. Nelson, I. M. Nilsson, F. André, G. von Heijne, et D. Werck-Reichhart, « Gene duplication leads to altered membrane topology of a cytochrome P450 enzyme in seed plants », Molecular Biology and Evolution, 2017.
    Résumé : Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays altered heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity.
    Mots-clés : B3S, LSOD.


  • T. Roach, T. Baur, W. Stöggl, et A. Krieger-Liszkay, « Chlamydomonas reinhardtii responding to high light: A role for 2-propenal (acrolein) », Physiologia Plantarum, 2017.


  • C. Samson, F. Celli, K. Hendriks, M. Zinke, N. Essawy, I. Herrada, A. - A. Arteni, F. - X. Theillet, B. Alpha-Bazin, J. Armengaud, C. Coirault, A. Lange, et S. Zinn-Justin, « Emerin self-assembly mechanism: role of the LEM domain », The FEBS Journal, vol. 284, nᵒ 2, p. 338-352, 2017.
    Mots-clés : B3S, CRYO, INTGEN, PF.


  • J. Santolini, F. André, S. Jeandroz, et D. Wendehenne, « Nitric oxide synthase in plants: Where do we stand? », Nitric Oxide, vol. 63, p. 30-38, 2017.


  • P. V. Sauer, J. Timm, D. Liu, D. Sitbon, E. Boeri-Erba, C. Velours, N. Mücke, J. Langowski, F. Ochsenbein, G. Almouzni, et D. Panne, « Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1 », eLife, vol. 6, mars 2017.
    Mots-clés : AMIG, B3S, PF, PIM.

  • P. Sétif, R. Mutoh, et G. Kurisu, « Dynamics and energetics of cyanobacterial photosystem I:ferredoxin complexes in different redox states », Biochimica Et Biophysica Acta, 2017.
    Résumé : Fast turnover of ferredoxin/Fd reduction by photosystem-I/PSI requires that it dissociates rapidly after it has been reduced by PSI:Fd intracomplex electron transfer. The rate constants of Fd dissociation from PSI have been determined by flash-absorption spectroscopy with different combinations of cyanobacterial PSIs and Fds, and different redox states of Fd and of the terminal PSI acceptor (FAFB). Newly obtained values were derived firstly from the fact that the dissociation constant between PSI and redox-inactive gallium-substituted Fd increases upon (FAFB) reduction and secondly from the characterization and elucidation of a kinetic phase following intracomplex Fd reduction to binding of oxidized Fd to PSI, a process which is rate-limited by the foregoing dissociation of reduced Fd from PSI. By reference to the complex with oxidized partners, dissociation rate constants were found to increase moderately with (FAFB) single reduction and by about one order of magnitude after electron transfer from (FAFB)(-) to Fd, therefore favoring turnover of Fd reduction by PSI. With Thermosynechococcus elongatus partners, values of 270, 730 and >10000 s(-1) were thus determined for (FAFB)Fdoxidized, (FAFB)(-)Fdoxidized and (FAFB)Fdreduced, respectively. Moreover, assuming a conservative upper limit for the association rate constant between reduced Fd and PSI, a significant negative shift of the Fd midpoint potential upon binding to PSI has been calculated (<-60 mV for Thermosynechococcus elongatus). From the present state of knowledge, the question is still open whether this redox shift is compatible with a large (>10) equilibrium constant for intracomplex reduction of Fd from (FAFB)(-).
    Mots-clés : association and dissociation kinetics, B3S, binding-induced shift of midpoint potential, Electron transfer, ferredoxin binding, gallium-substituted ferredoxin, MROP, photosynthesis, redox potential.

  • V. Šlouf, V. Kuznetsova, M. Fuciman, C. B. de Carbon, A. Wilson, D. Kirilovsky, et T. Polívka, « Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria », Photosynthesis Research, vol. 131, nᵒ 1, p. 105-117, 2017.
    Résumé : A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.
    Mots-clés : B3S, Carotenoids, Cyanobacteria, Intramolecular charge-transfer state, MROP, Non-photochemical quenching, Orange carotenoid protein, Red carotenoid protein, Spectrum Analysis, Ultrafast spectroscopy.


  • O. Tagit et N. Hildebrandt, « Fluorescence Sensing of Circulating Diagnostic Biomarkers Using Molecular Probes and Nanoparticles », ACS Sensors, vol. 2, nᵒ 1, p. 31-45, janv. 2017.


  • A. Talagas, L. Fontaine, L. Ledesma-García, J. Mignolet, I. Li de la Sierra-Gallay, N. Lazar, M. Aumont-Nicaise, M. J. Federle, G. Prehna, P. Hols, et S. Nessler, « Correction: Structural Insights into Streptococcal Competence Regulation by the Cell-to-Cell Communication System ComRS », PLOS Pathogens, vol. 13, nᵒ 2, p. e1006208, févr. 2017.
    Mots-clés : B3S, FAAM, PF, PIM.


  • A. Thurotte, C. Bourcier de Carbon, A. Wilson, L. Talbot, S. Cot, R. López-Igual, et D. Kirilovsky, « The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction », Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1858, nᵒ 4, p. 308-317, 2017.


  • E. Vernhes, M. Renouard, B. Gilquin, P. Cuniasse, D. Durand, P. England, S. Hoos, A. Huet, J. F. Conway, A. Glukhov, V. Ksenzenko, E. Jacquet, N. Nhiri, S. Zinn-Justin, et P. Boulanger, « High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid », Scientific Reports, vol. 7, p. 41662, févr. 2017.
    Mots-clés : B3S, FAAM, INTGEN, T5PHAG, VIRO.

  • E. Vernhes, M. Renouard, B. Gilquin, P. Cuniasse, D. Durand, P. England, S. Hoos, A. Huet, J. F. Conway, A. Glukhov, V. Ksenzenko, E. Jacquet, N. Nhiri, S. Zinn-Justin, et P. Boulanger, « Erratum: High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid », Scientific Reports, vol. 7, p. 43977, 2017.
    Mots-clés : B3S, FAAM, INTGEN, T5PHAG, VIRO.


  • M. Weisslocker-Schaetzel, M. Lembrouk, J. Santolini, et P. Dorlet, « Revisiting the Val/Ile Mutation in Mammalian and Bacterial Nitric Oxide Synthases: A Spectroscopic and Kinetic Study », Biochemistry, vol. 56, nᵒ 5, p. 748-756, févr. 2017.

0 | 50 | 100 | 150 | 200

--- Exporter la sélection au format

par webmaster - publié le , mis à jour le