Rechercher






Nos tutelles

CNRS

Nos partenaires


Accueil > Départements > Biologie Cellulaire > Michel TOLEDANO : Stress Oxydatif et Cancer

Publications

2017


  • A. Bersweiler, B. D'Autréaux, H. Mazon, A. Kriznik, G. Belli, A. Delaunay-Moisan, M. B. Toledano, et S. Rahuel-Clermont, « A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2 signaling », Nature Chemical Biology, 2017.
    Résumé : In Saccharomyces cerevisiae, Yap1 regulates an H2O2-inducible transcriptional response that controls cellular H2O2 homeostasis. H2O2 activates Yap1 by oxidation through the intermediary of the thiol peroxidase Orp1. Upon reacting with H2O2, Orp1 catalytic cysteine oxidizes to a sulfenic acid, which then engages into either an intermolecular disulfide with Yap1, leading to Yap1 activation, or an intramolecular disulfide that commits the enzyme into its peroxidatic cycle. How the first of these two competing reactions, which is kinetically unfavorable, occurs was previously unknown. We show that the Yap1-binding protein Ybp1 brings together Orp1 and Yap1 into a ternary complex that selectively activates condensation of the Orp1 sulfenylated cysteine with one of the six Yap1 cysteines while inhibiting Orp1 intramolecular disulfide formation. We propose that Ybp1 operates as a scaffold protein and as a sulfenic acid chaperone to provide specificity in the transfer of oxidizing equivalents by a reactive sulfenic acid species.
    Mots-clés : BIOCELL, SOC.


  • K. Bodvard, K. Peeters, F. Roger, N. Romanov, A. Igbaria, N. Welkenhuysen, G. Palais, W. Reiter, M. B. Toledano, M. Käll, et M. Molin, « Light-sensing via hydrogen peroxide and a peroxiredoxin », Nature Communications, vol. 8, p. 14791, mars 2017.

  • A. Delaunay-Moisan, A. Ponsero, et M. Toledano, « Reexamining the function of glutathione in oxidative protein folding and secretion », Antioxidants & Redox Signaling, 2017.
    Résumé : SIGNIFICANCE: Disturbance of glutathione metabolism is a hallmark of numerous diseases, yet glutathione functions are poorly understood. One key to this question is to consider its functional compartmentation. In the endoplasmic reticulum (ER), protein folding involves disulfide bond formation catalyzed by the thiol oxidase Ero1 and proteins from the disulfide isomerase family (PDI). GSH competes with substrates for oxidation by Ero1, but its requirement for ER oxidative protein folding is questioned. Recent Advances: Oxidative protein folding has been thoroughly dissected over the last decades, and its actors and their mode of action elucidated. Genetically-encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES: Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how glutathione can nevertheless support protein reduction. Hence, whether glutathione operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, further stimulated by the puzzling occurrence of glutathione in the E. coli periplasmic "secretory" compartment, aside of the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS: Addressing the mechanisms controlling glutathione traffic in and out the ER/periplasm and its recycling will help address glutathione function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed.
    Mots-clés : BIOCELL, SOC.

  • Y. Goulev, S. Morlot, A. Matifas, B. Huang, M. Molin, M. B. Toledano, et G. Charvin, « Nonlinear feedback drives homeostatic plasticity in H2O2 stress response », eLife, vol. 6, 2017.
    Résumé : Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell's ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties.
    Mots-clés : BIOCELL, cell biology, Computational Biology, S. cerevisiae, SOC, systems biology.

  • A. J. Ponsero, A. Igbaria, M. A. Darch, S. Miled, C. E. Outten, J. R. Winther, G. Palais, B. D'Autréaux, A. Delaunay-Moisan, et M. B. Toledano, « Endoplasmic Reticulum Transport of Glutathione by Sec61 Is Regulated by Ero1 and Bip », Molecular Cell, 2017.
    Résumé : In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient.
    Mots-clés : BIOCELL, Bip, disulfide bond, Endoplasmic Reticulum, Ero1, Glutathione, membrane transport, oxidative protein folding, PDC, redox biosensor, Redox homeostasis, Sec61, SOC.

  • M. B. Toledano et M. - E. Huang, « The Unfinished Puzzle of Glutathione Physiological Functions, an Old Molecule That Still Retains Many Enigmas », Antioxidants & Redox Signaling, vol. 27, nᵒ 15, p. 1127-1129, 2017.
    Résumé : Glutathione (GSH) is the most abundant nonprotein thiol found in living organisms. Since its discovery 130 years ago, understanding its cellular functions has been the subject of intensive research. Common scientific knowledge states that GSH is a major nonenzymatic antioxidant and redox buffer. Recent approaches that consider GSH compartmentation in the eukaryotic cell challenge this traditional view and reveal novel unexpected insights into GSH metabolism and physiology. This Forum on GSH features six review articles that focus on GSH metabolism and functions in mitochondria and the endoplasmic reticulum; its connection to cellular iron homeostasis, carcinogenesis, and anticancer drug resistance; a revisited view of GSH degradation pathways; and reconsiders old concepts of its mode of action by highlighting the importance of kinetics over thermodynamic redox equilibria. Antioxid. Redox Signal. 27, 1127-1129.
    Mots-clés : BIOCELL, cancer, Drug Resistance, Glutathione, glutathione compartmentalization, glutathione degradation, iron homeostasis, SOC.

2016



  • C. Appenzeller-Herzog, G. Bánhegyi, I. Bogeski, K. J. A. Davies, A. Delaunay-Moisan, H. J. Forman, A. Görlach, T. Kietzmann, F. Laurindo, E. Margittai, A. J. Meyer, J. Riemer, M. Rützler, T. Simmen, R. Sitia, M. B. Toledano, et I. P. Touw, « Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish », Free Radical Biology and Medicine, vol. 94, p. 157-160, 2016.

  • S. Hanzén, K. Vielfort, J. Yang, F. Roger, V. Andersson, S. Zamarbide-Forés, R. Andersson, L. Malm, G. Palais, B. Biteau, B. Liu, M. B. Toledano, M. Molin, et T. Nyström, « Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins », Cell, vol. 166, nᵒ 1, p. 140-151, 2016.
    Résumé : Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.
    Mots-clés : Animals, BIOCELL, Caloric Restriction, Genomic Instability, Heat-Shock Proteins, HSP70 Heat-Shock Proteins, Humans, Hydrogen Peroxide, Longevity, Oxidation-Reduction, Peroxidases, Protein Aggregates, Protein Folding, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Signal Transduction, SOC.


  • M. B. Toledano et B. HUANG, « Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles », Molecules and Cells, vol. 39, nᵒ 1, p. 31-39, janv. 2016.
    Mots-clés : bacteria, Bacterial Proteins, BIOCELL, Catalysis, chaperone, Free Radical Scavengers, Fungal Proteins, H2O2 scavenging, H2O2 signaling, Hydrogen Peroxide, Molecular Chaperones, Mutation, Peroxiredoxins, Signal Transduction, SOC, Yeasts.

2015


  • S. Boukhenouna, H. Mazon, G. Branlant, C. Jacob, M. B. Toledano, et S. Rahuel-Clermont, « Evidence that glutathione and the glutathione system efficiently recycle 1-cys sulfiredoxin in vivo », Antioxidants & Redox Signaling, vol. 22, nᵒ 9, p. 731-743, 2015.
    Résumé : AIMS: Typical 2-Cys peroxiredoxins (2-Cys Prxs) are Cys peroxidases that undergo inactivation by hyperoxidation of the catalytic Cys, a modification reversed by ATP-dependent reduction by sulfiredoxin (Srx). Such an attribute is thought to provide regulation of 2-Cys Prxs functions. The initial steps of the Srx catalytic mechanism lead to a Prx/Srx thiolsulfinate intermediate that must be reduced to regenerate Srx. In Saccharomyces cerevisiae Srx, the thiolsulfinate is resolved by an extra Cys (Cys48) that is absent in mammalian, plant, and cyanobacteria Srxs (1-Cys Srxs). We have addressed the mechanism of reduction of 1-Cys Srxs using S. cerevisiae Srx mutants lacking Cys48 as a model. RESULTS: We have tested the recycling of Srx by glutathione (GSH) by a combination of in vitro steady-state and single-turnover kinetic analyses, using enzymatic coupled assays, Prx fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and reverse-phase chromatography coupled to mass spectrometry. We demonstrate that GSH reacts directly with the thiolsulfinate intermediate, by following saturation kinetics with an apparent dissociation constant of 34 μM, while producing S-glutathionylated Srx as a catalytic intermediate which is efficiently reduced by the glutaredoxin/glutathione reductase system. Total cellular depletion of GSH impacted the recycling of Srx, confirming in vivo that GSH is the physiologic reducer of 1-Cys Srx. INNOVATION: Our study suggests that GSH binds to the thiolsulfinate complex, thus allowing non-rate limiting reduction. Such a structural recognition of GSH enables an efficient catalytic reduction, even at very low GSH cellular levels. CONCLUSION: This study provides both in vitro and in vivo evidence of the role of GSH as the primary reducer of 1-Cys Srxs.
    Mots-clés : BIOCELL, Glutathione, Oxidoreductases Acting on Sulfur Group Donors, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, SOC.


  • A. Delaunay-Moisan et C. Appenzeller-Herzog, « The antioxidant machinery of the endoplasmic reticulum: Protection and signaling », Free Radical Biology and Medicine, vol. 83, p. 341-351, 2015.
    Mots-clés : Animals, Antioxidants, BIOCELL, Endoplasmic Reticulum, Ero1, Glutathione, H(2)O(2), Humans, Hydrogen Peroxide, NADPH oxidase, Oxidation-Reduction, Oxidative folding, PDI, Reactive Oxygen Species, Redox homeostasis, Redox signaling, Signal Transduction, SOC, UPR.


  • A. Kaya, M. V. Gerashchenko, I. Seim, J. Labarre, M. B. Toledano, et V. N. Gladyshev, « Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins », Proceedings of the National Academy of Sciences, vol. 112, nᵒ 34, p. 10685-10690, août 2015.
    Mots-clés : Adaptation, Physiological, Aneuploidy, Antimycin A, BIOCELL, Chromosome Deletion, Chromosomes, Fungal, Cytochrome-c Peroxidase, DBG, Electron Transport, Gene Deletion, Gene Dosage, Genes, Fungal, Heat-Shock Proteins, Hydrogen Peroxide, Membrane Proteins, Mitochondrial Proteins, Oligomycins, oxidative stress, Oxidoreductases Acting on Sulfur Group Donors, PEPS, Peroxidases, Reactive Oxygen Species, respiration, Rotenone, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, SOC, thiol peroxidase.


  • Y. Noichri, G. Palais, V. Ruby, B. D’Autreaux, A. Delaunay-Moisan, T. Nyström, M. Molin, et M. B. Toledano, « In vivo parameters influencing 2-Cys Prx oligomerization: The role of enzyme sulfinylation », Redox Biology, vol. 6, p. 326-333, 2015.
    Mots-clés : BIOCELL, chaperone, Chromatography, Gel, Gene Expression Regulation, Fungal, H(2)O(2), Hydrogen Peroxide, Isoenzymes, Molecular Chaperones, Mutation, Peroxidase, Peroxidases, Peroxiredoxin, Plasmids, Protein Multimerization, Protein Structure, Quaternary, Recombinant Fusion Proteins, S. cerevisiae, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, SOC, Sulfinic Acids, Sulfiredoxin.


  • A. Parent, X. Elduque, D. Cornu, L. Belot, J. - P. Le Caer, A. Grandas, M. B. Toledano, et B. D’Autréaux, « Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols », Nature Communications, vol. 6, p. 5686, janv. 2015.
    Mots-clés : BIOCELL, Carbon-Sulfur Lyases, Chromatography, Gel, Chromatography, High Pressure Liquid, Cysteine, Glutathione, Humans, Iron-Binding Proteins, Mass Spectrometry, SOC, Software, Sulfhydryl Compounds, Sulfides.


  • M.  B. Toledano et A. Delaunay-Moisan, « Keeping Oxidative Metabolism on Time: Mitochondria as an Autonomous Redox Pacemaker Animated by H2O2 and Peroxiredoxin », Molecular Cell, vol. 59, nᵒ 4, p. 517-519, 2015.
    Mots-clés : Animals, BIOCELL, Circadian Rhythm, Humans, Mitochondria, Oxidoreductases Acting on Sulfur Group Donors, SOC.
--- Exporter la sélection au format

Publications Principales avant 2015

- Wu L., Jiang H., Chawsheen H.A., Mishra M., Young M.R., Gerard M., Toledano M.B., Colburn N.H., Wei Q. Tumor Promoter-induced Sulfiredoxin Is Required for Mouse Skin Tumorigenesis, Carcinogenesis, (2014), 35, 1177-1184.

- El Khouri,, E., Le Pavec,, G., Toledano, M.B., and Delaunay-Moisan, A. RNF185 is a novel E3 ligase of Endoplasmic Reticulum Associated Degradation (ERAD) that targets Cystic Fibrosis Transmembrane conductance Regulator (CFTR), J. Biol. Chem., (2013), 288, 31177-31191.

- Toledano, M.B., Delaunay-Moisan, A., Outten, C.E., and Igbaria, A. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid. Redox Signal., (2013), 18, 1699-1711.

- Martin D., Charpilienne A., Parent A., Boussac A., D’Autréaux B., Poupon J., Poncet D. The rotavirus nonstructural protein NSP5 coordinates a [2Fe-2S] iron-sulfur cluster that modulates interaction to RNA. FASEB J., (2013), 27(3):1074-83

- Spiro S., D’Autréaux B. Non-Heme Iron Sensors of Reactive Oxygen and Nitrogen Species. Antioxid. Redox Signal., (2012), 17(9):1264-1276

- Kumar, C., Igbaria, A., D’autreaux, B., Planson, A.-G., Junot, C., Godat, E., Bachhawat, A.K., Delaunay-Moisan, A., Toledano, M.B. Glutathione revisited : a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J., (2011), 30, 2044-2056.

- Planson, A.-G., Palais, G., Abbas, K., Gerard, M., Couvelard, L., Delaunay, A., Baulande, S., Drapier, J.-C. and Toledano, M.B. Sulfiredoxin protects mice from lipopolysaccaride-induced endotoxic shock. Antioxid. Redox Signal., (2011), 14, 2071–2080.

- Molin, M., Yang, J., Hanzen, S., Toledano, M. B., Labarre, J., and Nyström, T. Dietary restriction requires the peroxiredoxin Tsa1 for enhanced H2O2 resistance and life span extension in Saccharomyces cerevisiae. Mol. Cell., (2011), 43, 823–833.

- Soler N., Delagoutte E., Miron S., D’Autréaux B., Craescu G., Frapart Y.M., Mansuy D., Baldacci G., Huang M.E., Vernis L. Interaction between the reductase Tah18 and highly conserved Fe-S containing Dre2 C-terminus is essential for yeast viability. Mol. Micro., (2011), 82(1):54-67

- Fourquet S., Guerois R., Biard. D., and Toledano M.B. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation, J. Biol. Chem., (2010), 285, 8463-71.

- Chiappetta, G., Ndiaye, S., Igbaria, A., Kumar, S., Vinh, J., and Toledano, M.B. Proteome screens for Cys residues oxidation : the Redoxome, Methods Enzymol., (2010), 473C:199-216.

- Tucker N.P.§, D’Autréaux B.§, Yousafzai F., Fairhurst S., Spiro S., Dixon R. Analysis of the nitric oxide-sensing non-heme iron center in the NorR regulatory protein. J. Biol. Chem., (2008), 283(2):908-918.

- Guerrier L, D’Autreaux B, Atanassov C, Khoder G, Boschetti E., Evaluation of a standardized method of protein purification and identification after discovery by mass spectrometry. J. Proteomics. (2008), 71(3):368-782007

- The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Fourquet S, Huang ME, D’Autreaux B, Toledano MB.
Antioxid. Redox Signal. (2008), 10(9):1565-76.

- D’Autréaux B., Pecqueur L., Gonzalez de Peredo A., Diederix R.E., Tabet L., Bersch B., Forest E., Michaud-Soret I. Reversible redox- and zinc-dependent dimerization of the Escherichia coli fur protein. Biochemistry, (2007), 46(5):1329-1342.

- D’Autréaux B., Toledano M.B. ROS as signalling molecules : mechanisms that generate specificity in ROS homeostasis. Nature Rev. Mol. Cell Biol. (2007), 8(10):813-24.

- Pecqueur L., D’Autréaux B., Dupuy J., Nicolet Y., Jacquamet L., Brutscher B., Michaud-Soret I., Bersch B.Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J. Biol. Chem., (2006), 281(30):21286-95.

- Le Moan, N., Clement, G., Le Maout, S., Tacnet, F., and Toledano, M.B. The S. cerevisiae proteome of oxidized protein-thiols : Contrasted functions for the thioredoxin and GSH pathways. J. Biol. Chem., (2006), 281, 10420-30.

- D’Autréaux B., Tucker N.P., Dixon R., Spiro S. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature, (2005), 437(7059):769-772.

- Vivancos, A., Castillo, E., Bîteau, B., Nicot, C., Ayté, J., *Toledano, M. B., *Hidalgo, E. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2 sensing by the antioxidant Pap1 pathway. PNAS, (2005), 102, 8875-880. *Co-senior authors.

- D’Autréaux B., Horner O., Gambarelli S., Berthomieu C., Latour J.M., Michaud-Soret I.Spectroscopic description of the two nitrosyl-iron complexes responsible for fur inhibition by nitric oxide. J. Am. Chem. Soc., (2004), 126(19):6005-16.

- Biteau, B., Labarre, J. and M. B. Toledano. ATP-dependent reduction of cysteine sulfinic acid by S. cerevisiae sulphiredoxin. Nature, (2003), 425, 980-984.

- Delaunay, A., D. Pflieger, M.-B. Barrault, J. Vinh and M. B. Toledano*. A thiol peroxidase is a H2O2 receptor and redox-transducer in gene activation. Cell, (2002)111, 471-481.

- D’Autréaux B., Touati D., Bersch B., Latour J.M., Michaud-Soret I. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. PNAS, (2002), 99(26):16619-24.

- Delaunay, A.-D. Isnard, and M. B. Toledano. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J., (2000), 19, 5157-5166.

- Lee, J., C. Godon, G. Lagniel, D. Spector, J. Garin, J. Labarre and M. B. Toledano. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast . J. Biol. Chem., (1999), 274, 16040-16046.

- Godon C., Lagniel G., Lee J, Kieffer S., Buhler J. M., Boucherie H., Perrot M., Toledano M., Labarre J. The H2O2 stimulon in yeast. J. Biol. Chem., (1998) 273, 22480-22489.

- Toledano, M. B., Kullik, I., Trinh, F., Baird, P., Schneider, T. D., and Storz G. Redox-dependent shift of OxyR-DNA contacts along an extended DNA binding site : a mechanism for differential promoter selection. Cell, (1994), 78, 897-909.

- Toledano, M.B., Gosh, D., Trinh, F., and Leonard W.J. Differential DNA binding of NF-κB p50 and p65 is contributed by a short N-terminal domain. Mol. Cell. Biol., (1993), 13, 852-860.

- Toledano, M.B., and Leonard, W.J. Modulation of transcription factor NF-κB binding activity by oxidation-reduction in vitro. PNAS, (1991), 88, 4328-4332.

publié le , mis à jour le