Nos tutelles


Nos partenaires

Accueil > Départements > Biologie Cellulaire > Grégory VERT : Signalisation Cellulaire et Ubiquitination chez les Plantes

Publications de l’équipe

Principales publications


  • G. Dubeaux et G. Vert, « Zooming into plant ubiquitin-mediated endocytosis », Current Opinion in Plant Biology, vol. 40, p. 56-62, 2017.
    Résumé : Endocytosis in plants plays an essential role, not only for basic cellular functions but also for growth, development, and environmental responses. Over the past few years, ubiquitin emerged as a major signal triggering the removal of plasma membrane proteins from the cell surface and promoting their vacuolar targeting. Detailed genetic, biochemical and imaging studies have provided initial insights into the precise mechanisms and roles of ubiquitin-mediated endocytosis in plants. Here, we summarize the present state of knowledge about the machinery involved in plant ubiquitin-mediated endocytosis and how this is coordinated in time and space to control the internalization and the endosomal sorting of endocytosed proteins.
    Mots-clés : BIOCELL, UBINET.

  • A. Johnson et G. Vert, « Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy », Frontiers in Plant Science, vol. 8, p. 612, 2017.
    Résumé : Endocytosis is a key process in the internalization of extracellular materials and plasma membrane proteins, such as receptors and transporters, thereby controlling many aspects of cell signaling and cellular homeostasis. Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, nutrient delivery, toxin avoidance, and pathogen defense. The precise mechanisms of endocytosis in plants remain quite elusive. The lack of direct visualization and examination of single events of endocytosis has greatly hampered our ability to precisely monitor the cell surface lifetime and the recruitment profile of proteins driving endocytosis or endocytosed cargos in plants. Here, we discuss the necessity to systematically implement total internal reflection fluorescence microcopy (TIRF) in the Plant Cell Biology community and present reliable protocols for high spatial and temporal imaging of endocytosis in plants using clathrin-mediated endocytosis as a test case, since it represents the major route for internalization of cell-surface proteins in plants. We developed a robust method to directly visualize cell surface proteins using TIRF microscopy combined to a high throughput, automated and unbiased analysis pipeline to determine the temporal recruitment profile of proteins to single sites of endocytosis, using the departure of clathrin as a physiological reference for scission. Using this 'departure assay', we assessed the recruitment of two different AP-2 subunits, alpha and mu, to the sites of endocytosis and found that AP2A1 was recruited in concert with clathrin, while AP2M was not. This validated approach therefore offers a powerful solution to better characterize the plant endocytic machinery and the dynamics of one's favorite cargo protein.
    Mots-clés : Arabidopsis, BIOCELL, Endocytosis, imaging techniques, Plants, TIRF microscopy, trafficking, UBINET.

  • S. Martins, A. Montiel-Jorda, A. Cayrel, S. Huguet, C. P. - L. Roux, K. Ljung, et G. Vert, « Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature », Nature Communications, vol. 8, nᵒ 1, p. 309, 2017.
    Résumé : Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.
    Mots-clés : BIOCELL, UBINET.

  • S. Martins, G. Vert, et Y. Jaillais, « Probing Activation and Deactivation of the BRASSINOSTEROID INSENSITIVE1 Receptor Kinase by Immunoprecipitation », Methods in Molecular Biology (Clifton, N.J.), vol. 1564, p. 169-180, 2017.
    Résumé : Brassinosteroids (BRs) are sterol-derived hormones that control plant growth and development. The BR receptor complex is encoded by the BRASSINOSTEROID INSENSITIVE1 (BRI1) and members of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE family. For activation and deactivation, the BR receptor complex uses different posttranslational modifications and recruits various partner proteins. Here, we describe optimized immunoprecipitation protocols and variants for biochemical analyses of posttranslational modifications of BRI1 and of protein-protein interactions.
    Mots-clés : BIOCELL, Brassinosteroids, BRI1, Immunoprecipitation, Phosphorylation, Protein–protein interaction, UBINET, Ubiquitination.



--- Exporter la sélection au format

Principales publications avant 2015

  • Barberon, M., Dubeaux, G., Kolb, C., Isono, E., Zelazny, E., and Vert, G. (2014). Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) at the plant-soil interface plays crucial role in metal homeostasis. PNAS 111, 8293-8298.
  • Zelazny, E. and Vert, G. (2014). Plant nutrition : root transporters on the move. Plant Physiology 166, 500-508.
  • Luschnig, C., and Vert, G. (2014). The dynamics of plant membrane proteins : PINs and beyond. Development 141, 2924-2938.
  • Thomine, S., and Vert, G. (2013). Iron transport in plants : better be safe than sorry ! Current Opinion in Plant Biology 16, 322-327.
  • Jaillais, Y. and Vert, G. (2012). Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nature Cell Biology 14, 788-790.
  • Vert, G., and chory, J. (2011). Crosstalk in Cellular Signaling : Background noise or the Real Thing ? Developmental Cell 6, 985-991.
  • Barberon, M., Zelazny, E., Robert, S., Conejero, G., Curie, C., Friml, J., and Vert, G. (2011). Monoubiquitin-dependent endocytosis of the root transporter IRT1 controls iron uptake in plants. PNAS 108, E450-E458.
    [Pubmed] [F1000]
  • Sivitz, A., Grinvalds, C. Barberon, M., Curie, C. and Vert, G. (2011). Proteasome-Mediated Turnover of the Transcriptional Activator FIT is Required for Plant Iron Deficiency Responses. Plant Journal 66, 1044-1052.
  • Vert, G. and Chory, J. (2009). A Toggle Switch in Plant Nitrate Uptake. Cell 138, 1064-1066.
  • Vert, G. (2008). Plant signaling : brassinosteroids, immunity and effectors are BAK ! Current Biology 18, 963-965.
  • Vert, G., Walcher, C., Chory, J., and Nemhauser, J. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. PNAS 105, 9829-9834.
    [Pubmed] [F1000]
  • Vert, G. and Chory, J. (2006). Downstream nuclear events in brassinosteroid signaling. Nature 441, 96-100.
    [Pubmed] [F1000]

publié le , mis à jour le