Nos tutelles


Nos partenaires

Accueil > Publications

Publications de l’I2BC


  • A. Barwinska-Sendra, A. Baslé, K. J. Waldron, et S. Un, « A charge polarization model for the metal-specific activity of superoxide dismutases », Physical chemistry chemical physics: PCCP, janv. 2018.
    Résumé : The pathogenicity of Staphylococcus aureus is enhanced by having two superoxide dismutases (SODs): a Mn-specific SOD and another that can use either Mn or Fe. Using 94 GHz electron-nuclear double resonance (ENDOR) and electron double resonance detected (ELDOR)-NMR we show that, despite their different metal-specificities, their structural and electronic similarities extend down to their active-site 1H- and 14N-Mn(ii) hyperfine interactions. However these interactions, and hence the positions of these nuclei, are different in the inactive Mn-reconstituted Escherichia coli Fe-specific SOD. Density functional theory modelling attributes this to a different angular position of the E. coli H171 ligand. This likely disrupts the Mn-H171-E170' triad causing a shift in charge and in metal redox potential, leading to the loss of activity. This is supported by the correlated differences in the Mn(ii) zero-field interactions of the three SOD types and suggests that the triad is important for determining metal specific activity.
    Mots-clés : B3S.

  • M. Byrdin, C. Duan, D. Bourgeois, et K. Brettel, « A long-lived Triplet State is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins », Journal of the American Chemical Society, févr. 2018.
    Résumé : Though ubiquitously used as selective fluorescence markers in cellular biology, fluorescent proteins (FPs) still have not disclosed all of their surprising properties. One important issue, notably for single-molecule applications, is the nature of the triplet state, suggested to be the starting point for many possible photochemical reactions leading to phenomena such as blinking or bleaching. Here, we applied transient absorption spectroscopy to characterize dark states in the prototypical enhanced green fluorescent pro-tein (EGFP) of hydrozoan origin and, for comparison, in IrisFP, a representative phototransformable FP of anthozoan origin. We identified a long-lived (approx. 5 milliseconds) "dark" state that is formed with a quantum yield of approx. 1 % and has pro-nounced absorption throughout the visible/NIR range (peak at around 900 nm). Detection of phosphorescence emission with iden-tical kinetics and excitation spectrum allowed unambiguous identification of this state as the first excited triplet state of the depro-tonated chromophore. This triplet state was further characterized by determining its phosphorescence emission spectrum, the tem-perature dependence of its decay kinetics and its reactivity towards oxygen and electron acceptors and donors. It is suggested that it is this triplet state that lies at the origin of oxidative photochemistry in green FPs, leading to phenomena such as so called "oxi-dative redding", "primed photo-conversion", or, in a manner similar to that previously observed for organic dyes, redox induced blinking control with the reducing and oxidizing system ("ROXS").
    Mots-clés : B3S, LPB.

  • T. Candelli, D. Challal, J. - B. Briand, J. Boulay, O. Porrua, J. Colin, et D. Libri, « High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast », The EMBO journal, janv. 2018.
    Résumé : Transcription termination delimits transcription units but also plays important roles in limiting pervasive transcription. We have previously shown that transcription termination occurs when elongating RNA polymerase II (RNAPII) collides with the DNA-bound general transcription factor Reb1. We demonstrate here that many different DNA-binding proteins can induce termination by a similar roadblock (RB) mechanism. We generated high-resolution transcription maps by the direct detection of RNAPII upon nuclear depletion of two essential RB factors or when the canonical termination pathways for coding and non-coding RNAs are defective. We show that RB termination occurs genomewide and functions independently of (and redundantly with) the main transcription termination pathways. We provide evidence that transcriptional readthrough at canonical terminators is a significant source of pervasive transcription, which is controlled to a large extent by RB termination. Finally, we demonstrate the occurrence of RB termination around centromeres and tRNA genes, which we suggest shields these regions from RNAPII to preserve their functional integrity.
    Mots-clés : DBG, pervasive transcription, Rap1, roadblock termination, TENOR, transcription readthrough, transcription termination mechanism.

  • N. Canu, P. Belin, R. Thai, I. Correia, O. Lequin, J. Seguin, M. Moutiez, et M. Gondry, « Non-canonical Amino Acid Incorporation into 2,5-Diketopiperazines by Cyclodipeptide Synthases », Angewandte Chemie (International Ed. in English), janv. 2018.
    Résumé : The manipulation of natural product biosynthetic pathways is a powerful means of expanding the chemical diversity of bioactive molecules. 2,5-diketopiperazines (2,5-DKPs) have been widely developed by medicinal chemists, but their biological production is yet to be exploited. We introduce here an in vivo method to incorporate non-canonical amino acids (ncAAs) into 2,5-DKPs using cyclodipeptide synthases (CDPSs), the enzymes responsible for scaffold assembly in many 2,5-DKP biosynthetic pathways. CDPSs use aminoacyl-tRNAs as substrates. We exploited the natural ability of aminoacyl tRNA synthetases to load ncAAs onto tRNAs. We found 26 ncAAs usable as substrates by CDPSs, leading to the enzymatic production of approximately 200 non canonical cyclodipeptides. CDPSs constitute an efficient enzymatic tool for the synthesis of highly diverse 2,5-DKPs. Such diversity could be further expanded using, for example, various cyclodipeptide-tailoring enzymes found in 2,5-DKP biosynthetic pathways.
    Mots-clés : BIOSYN, biosynthesis, Cyclodipeptide synthases, Diketopiperazines, MICROBIO, Natural product engineering, Non-canonical amino acid.

  • H. - J. Chang, P. Mayonove, A. Zavala, A. De Visch, P. Minard, M. Cohen-Gonsaud, et J. Bonnet, « A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria », ACS synthetic biology, vol. 7, nᵒ 1, p. 166-175, janv. 2018.
    Résumé : Engineered bacteria promise to revolutionize diagnostics and therapeutics, yet many applications are precluded by the limited number of detectable signals. Here we present a general framework to engineer synthetic receptors enabling bacterial cells to respond to novel ligands. These receptors are activated via ligand-induced dimerization of a single-domain antibody fused to monomeric DNA-binding domains (split-DBDs). Using E. coli as a model system, we engineer both transmembrane and cytosolic receptors using a VHH for ligand detection and demonstrate the scalability of our platform by using the DBDs of two different transcriptional regulators. We provide a method to optimize receptor behavior by finely tuning protein expression levels and optimizing interdomain linker regions. Finally, we show that these receptors can be connected to downstream synthetic gene circuits for further signal processing. The general nature of the split-DBD principle and the versatility of antibody-based detection should support the deployment of these receptors into various hosts to detect ligands for which no receptor is found in nature.
    Mots-clés : B3S, MIP.

  • F. Coll, J. Phelan, G. A. Hill-Cawthorne, M. B. Nair, K. Mallard, S. Ali, A. M. Abdallah, S. Alghamdi, M. Alsomali, A. O. Ahmed, S. Portelli, Y. Oppong, A. Alves, T. B. Bessa, S. Campino, M. Caws, A. Chatterjee, A. C. Crampin, K. Dheda, N. Furnham, J. R. Glynn, L. Grandjean, D. Minh Ha, R. Hasan, Z. Hasan, M. L. Hibberd, M. Joloba, E. C. Jones-López, T. Matsumoto, A. Miranda, D. J. Moore, N. Mocillo, S. Panaiotov, J. Parkhill, C. Penha, J. Perdigão, I. Portugal, Z. Rchiad, J. Robledo, P. Sheen, N. T. Shesha, F. A. Sirgel, C. Sola, E. Oliveira Sousa, E. M. Streicher, P. V. Helden, M. Viveiros, R. M. Warren, R. McNerney, A. Pain, et T. G. Clark, « Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis », Nature Genetics, janv. 2018.

  • M. Crüsemann, R. Reher, I. Schamari, A. O. Brachmann, T. Ohbayashi, M. Kuschak, D. Malfacini, A. Seidinger, M. Pinto-Carbó, R. Richarz, T. Reuter, S. Kehraus, A. Hallab, M. Attwood, H. B. Schiöth, P. Mergaert, Y. Kikuchi, T. F. Schäberle, E. Kostenis, D. Wenzel, C. E. Müller, J. Piel, A. Carlier, L. Eberl, et G. M. König, « Heterologous Expression, Biosynthetic Studies, and Ecological Function of the Selective Gq-Signaling Inhibitor FR900359 », Angewandte Chemie (International Ed. in English), vol. 57, nᵒ 3, p. 836-840, janv. 2018.
    Résumé : The cyclic depsipeptide FR900359 (FR), isolated from the tropical plant Ardisia crenata, is a strong and selective inhibitor of Gq proteins, making it an indispensable pharmacological tool to study Gq-related processes, as well as a promising drug candidate. Gq inhibition is a novel mode of action for defense chemicals and crucial for the ecological function of FR, as shown by in vivo experiments in mice, its affinity to insect Gq proteins, and insect toxicity studies. The uncultured endosymbiont of A. crenata was sequenced, revealing the FR nonribosomal peptide synthetase (frs) gene cluster. We here provide a detailed model of FR biosynthesis, supported by in vitro enzymatic and bioinformatic studies, and the novel analogue AC-1, which demonstrates the flexibility of the FR starter condensation domains. Finally, expression of the frs genes in E. coli led to heterologous FR production in a cultivable, bacterial host for the first time.
    Mots-clés : biosynthesis, FR900359, G proteins, G proteins, Heterologous expression, MICROBIO, natural products, PBI.

  • C. Dard-Dascot, D. Naquin, Y. d'Aubenton-Carafa, K. Alix, C. Thermes, et E. van Dijk, « Systematic comparison of small RNA library preparation protocols for next-generation sequencing », BMC genomics, vol. 19, nᵒ 1, p. 118, 2018.
    Résumé : BACKGROUND: Next-generation sequencing technologies have revolutionized the study of small RNAs (sRNAs) on a genome-wide scale. However, classical sRNA library preparation methods introduce serious bias, mainly during adapter ligation steps. Several types of sRNA including plant microRNAs (miRNA), piwi-interacting RNAs (piRNA) in insects, nematodes and mammals, and small interfering RNAs (siRNA) in insects and plants contain a 2'-O-methyl (2'-OMe) modification at their 3' terminal nucleotide. This inhibits 3' adapter ligation and makes library preparation particularly challenging. To reduce bias, the NEBNext kit (New England Biolabs) uses polyethylene glycol (PEG), the NEXTflex V2 kit (BIOO Scientific) uses both randomised adapters and PEG, and the novel SMARTer (Clontech) and CATS (Diagenode) kits avoid ligation altogether. Here we compared these methods with Illumina's classical TruSeq protocol regarding the detection of normal and 2' OMe RNAs. In addition, we modified the TruSeq and NEXTflex protocols to identify conditions that improve performance. RESULTS: Among the five kits tested with their respective standard protocols, the SMARTer and CATS kits had the lowest levels of bias but also had a strong formation of side products, and as a result performed relatively poorly with biological samples; NEXTflex detected the largest numbers of different miRNAs. The use of a novel type of randomised adapters called MidRand-Like (MRL) adapters and PEG improved the detection of 2' OMe RNAs both in the TruSeq as well as in the NEXTflex protocol. CONCLUSIONS: While it is commonly accepted that biases in sRNA library preparation protocols are mainly due to adapter ligation steps, the ligation-free protocols were not the best performing methods. Our modified versions of the TruSeq and NEXTflex protocols provide an improved tool for the study of 2' OMe RNAs.
    Mots-clés : 2’-O-methyl RNA, ANGE, Bias, CHERDIR, DBG, Library preparation, NGS.

  • D. Drubay, D. Gautheret, et S. Michiels, « A benchmark study of scoring methods for non-coding mutations », Bioinformatics (Oxford, England), janv. 2018.
    Résumé : Motivation: Detailed knowledge of coding sequences has led to different candidate models for pathogenic variant prioritization. Several deleteriousness scores have been proposed for the non-coding part of the genome, but no large-scale comparison has been realized to date to assess their performance. Results: We compared the leading scoring tools (CADD, FATHMM-MKL, Funseq2 and GWAVA) and some recent competitors (DANN, SNP and SOM scores) for their ability to discriminate assumed pathogenic variants from assumed benign variants (using the ClinVar, COSMIC and 1000 genomes project databases). Using the ClinVar benchmark, CADD was the best tool for detecting the pathogenic variants that are mainly located in protein coding gene regions. Using the COSMIC benchmark, FATHMM-MKL, GWAVA and SOMliver outperformed the other tools for pathogenic variants that are typically located in lincRNAs, pseudogenes, and other parts of the non-coding genome. However, all tools had low precision, which could potentially be improved by future non-coding genome feature discoveries. These results may have been influenced by the presence of potential benign variants in the COSMIC database. The development of a gold standard as consistent as ClinVar for these regions will be necessary to confirm our tool ranking. Availability and Implementation: The Snakemake, C ++ and R codes are freely available from and supported on Linux. Contact: Supplementary information: Supplementary results are available at Bioinformatics online.
    Mots-clés : DBG, SSFA.

  • A. Durand, M. - L. Bourbon, A. - S. Steunou, B. Khalfaoui-Hassani, C. Legrand, A. Guitton, C. Astier, et S. Ouchane, « Biogenesis of the bacterial cbb3 cytochrome c oxidase: Active subcomplexes support a sequential assembly model », The Journal of Biological Chemistry, vol. 293, nᵒ 3, p. 808-818, janv. 2018.
    Résumé : The cbb3 oxidase has a high affinity for oxygen and is required for growth of bacteria, including pathogens, in oxygen-limited environments. However, the assembly of this oxidase is poorly understood. Most cbb3 are composed of four subunits: the catalytic CcoN subunit, the two cytochrome c subunits (CcoO and CcoP) involved in electron transfer, and the small CcoQ subunit with an unclear function. Here, we address the role of these four subunits in cbb3 biogenesis in the purple bacterium Rubrivivax gelatinosus Analyses of membrane proteins from different mutants revealed the presence of active CcoNQO and CcoNO subcomplexes and also showed that the CcoP subunit is not essential for their assembly. However, CcoP was required for the oxygen reduction activity in the absence of CcoQ. We also found that CcoQ is dispensable for forming an active CcoNOP subcomplex in membranes. CcoNOP exhibited oxygen reductase activity, indicating that the cofactors (hemes b and copper for CcoN and cytochromes c for CcoO and CcoP) were present within the subunits. Finally, we discovered the presence of a CcoNQ subcomplex and showed that CcoN is the required anchor for the assembly of the full CcoNQOP complex. On the basis of these findings, we propose a sequential assembly model in which the CcoQ subunit is required for the early maturation step: CcoQ first associates with CcoN before the CcoNQ-CcoO interaction. CcoP associates to CcoNQO subcomplex in the late maturation step, and once the CcoNQOP complex is fully formed, CcoQ is released for degradation by the FtsH protease. This model could be conserved in other bacteria, including the pathogenic bacteria lacking the assembly factor CcoH as in R. gelatinosus.
    Mots-clés : BACADA, bacteria, cbb3 cytochrome c oxidase biogenesis, cytochrome oxidase, Membrane protein, MICROBIO.

  • B. Gourion et B. Alunni, « Strain-specific symbiotic genes: a new level of control in the intracellular accommodation of rhizobia within legume nodule cells », Molecular plant-microbe interactions: MPMI, janv. 2018.
    Résumé : This is a short commentary on the article by Wang et al. published in MPMI Vol. 31, No. 2, pages 240-248.
    Mots-clés : MICROBIO, PBI.

  • L. Laboureur, V. Guérineau, S. Auxilien, S. Yoshizawa, et D. Touboul, « Profiling of modified nucleosides from ribonucleic acid digestion by supercritical fluid chromatography coupled to high resolution mass spectrometry », Journal of Chromatography. A, vol. 1537, p. 118-127, févr. 2018.
    Résumé : A method based on supercritical fluid chromatography coupled to high resolution mass spectrometry for the profiling of canonical and modified nucleosides was optimized, and compared to classical reverse-phase liquid chromatography in terms of separation, number of detected modified nucleosides and sensitivity. Limits of detection and quantification were measured using statistical method and quantifications of twelve nucleosides of a tRNA digest from E. coli are in good agreement with previously reported data. Results highlight the complementarity of both separation techniques to cover the largest view of nucleoside modifications for forthcoming epigenetic studies.
    Mots-clés : DBG, Epigenetic, High resolution mass spectrometry, Nucleoside, RNA, RNASTR, Supercritical fluid chromatography.

  • L. Latino et C. Pourcel, « Recovery and Characterization of Bacteria Resisting Infection by Lytic Bacteriophage », Methods in Molecular Biology (Clifton, N.J.), vol. 1693, p. 85-98, 2018.
    Résumé : Bacteria and bacteriophages coexist and coevolve, bacteriophages being obligatory predators exerting an evolutionary pressure on their prey. Mechanisms in action vary depending on the bacterial genomic content and on the regulation of the bacteriophage cycle. To assess the multiplicity of bacterial genes involved in resistance as well as the changes in the bacteriophage interactions with the bacteria, it is necessary to isolate and investigate large numbers of independent resistant variants. Here we describe protocols that have been applied to the study of Pseudomonas aeruginosa and four of its virulent bacteriophages belonging to the Podoviridae and Myoviridae bacteriophage families. Mutations are identified using whole genome sequencing of resistant variants. Phenotypic analyses are performed to describe the changes conferred by the mutations.
    Mots-clés : Bacterial phenotype, Bacteriophages, Complementation, Genome sequencing, LGBMB, MICROBIO.

  • J. Marion, R. Le Bars, L. Besse, H. Batoko, et B. Satiat-Jeunemaitre, « Multiscale and Multimodal Approaches to Study Autophagy in Model Plants », Cells, vol. 7, nᵒ 1, janv. 2018.
    Résumé : Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway. In this review, we describe useful protocols for studying autophagy in the plant cell, taking into account some specificities of the plant model.
    Mots-clés : Arabidopsis, autophagosome, Autophagy, autophagy assays, BIOCELL, CYTO, DYNBSJ, methods, PHOT, plant cells, Tobacco.

  • P. Mergaert, « Role of antimicrobial peptides in controlling symbiotic bacterial populations », Natural Product Reports, févr. 2018.
    Résumé : Covering: up to 2018Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.
    Mots-clés : MICROBIO, PBI.

  • N. Morellet, X. Li, S. A. Wieninger, J. L. Taylor, J. Bischerour, S. Moriau, E. Lescop, B. Bardiaux, N. Mathy, N. Assrir, M. Bétermier, M. Nilges, A. B. Hickman, F. Dyda, N. L. Craig, et E. Guittet, « Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase », Nucleic Acids Research, janv. 2018.
    Résumé : The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure-function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5'-TGCGT-3'/3'-ACGCA-5' motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity.
    Mots-clés : DBG, MICMAC.

  • B. Negrutskii, D. Vlasenko, M. Mirande, P. Futernyk, et A. El'skaya, « mRNA-Independent way to regulate translation elongation rate in eukaryotic cells », IUBMB life, févr. 2018.
    Résumé : The question of what governs the translation elongation rate in eukaryotes has not yet been completely answered. Earlier, different availability of different tRNAs was considered as a main factor involved, however, recent data revealed that the elongation rate does not always depend on tRNA availability. Here, we offer another, codon-independent approach to explain specific tRNA-dependence of the elongation rate in eukaryotes. We hypothesize that the exit rate of eukaryotic translation elongation factor 1A (eEF1A)*GDP from the 80S ribosome depends on the protein affinity to specific aminoacyl-tRNA remaining on the ribosome after GTP hydrolysis. Subsequently, a slower dissociation of eEF1A*GDP from certain aminoacyl-tRNAs in the ribosome can negatively influence the ribosomal elongation rate in a tRNA-dependent and mRNA-independent way. The specific tRNA-dependent departure rate of eEF1A*GDP from the ribosome is suggested to be a novel factor contributing to the overall translation elongation control in eukaryotic cells. © 2018 IUBMB Life, 2018.
    Mots-clés : DBG, eukaryotic gene expression, MARS, protein synthesis, Ribosome, transfer RNAs and aminoacyl-tRNA synthetases.

  • F. Ngadjeua, E. Braud, S. Saidjalolov, L. Iannazzo, D. Schnappinger, S. Ehrt, J. - E. Hugonnet, D. Mengin-Lecreulx, D. P. Patin, M. Ethève-Quelquejeu, M. Fonvielle, et M. Arthur, « Critical impact of peptidoglycan precursor amidation on the activity of L,D-transpeptidases from Enterococcus faecium and Mycobacterium tuberculosis », Chemistry (Weinheim an Der Bergstrasse, Germany), févr. 2018.
    Résumé : The bacterial cell wall peptidoglycan contains unusual L and D amino acids assembled in branched peptides. Insight into the biosynthesis of the polymer has been hampered by limited access to substrates and to suitable polymerization assays. Here we report the full synthesis of the peptide stem of peptidoglycan precursors from two pathogenic bacteria, Enterococcus faecium and Mycobacterium tuberculosis, and the development of a sensitive post-derivatization assay for their cross-linking by L,D-transpeptidases. Access to series of stem peptides showed that amidation of free carboxyl groups is essential for optimal enzyme activity, in particular the amidation of diaminopimelate (DAP) residues for the cross-linking activity of the L,D-transpeptidase LdtMt2 from M. tuberculosis. Accordingly, construction of a conditional mutant established the essentiality of AsnB indicating that this DAP amidotransferase is an attractive target for the development of anti-mycobacterial drugs.
    Mots-clés : Amidation, Amidotransferase, ENVBAC, MICROBIO, Mycobacterium tuberculosis, Peptidoglycan, Transpeptidase.

  • D. P. O'Brien, A. C. S. Perez, J. Karst, S. E. Cannella, V. Y. N. Enguéné, A. Hessel, D. Raoux-Barbot, A. Voegele, O. Subrini, M. Davi, J. I. Guijarro, B. Raynal, B. Baron, P. England, B. Hernandez, M. Ghomi, V. Hourdel, C. Malosse, J. Chamot-Rooke, P. Vachette, D. Durand, S. Brier, D. Ladant, et A. Chenal, « Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough », Toxicon: Official Journal of the International Society on Toxinology, janv. 2018.
    Résumé : The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process.
    Mots-clés : B3S, Bordetella pertussis, Calcium, CyaA toxin, Disorder-to-order transition, FAAM, Folding, Protein secretion, Whooping cough.

  • C. Orelle, C. Durmort, K. Mathieu, B. Duchêne, S. Aros, F. Fenaille, F. André, C. Junot, T. Vernet, et J. - M. Jault, « A multidrug ABC transporter with a taste for GTP », Scientific Reports, vol. 8, nᵒ 1, p. 2309, févr. 2018.
    Résumé : During the evolution of cellular bioenergetics, many protein families have been fashioned to match the availability and replenishment in energy supply. Molecular motors and primary transporters essentially need ATP to function while proteins involved in cell signaling or translation consume GTP. ATP-Binding Cassette (ABC) transporters are one of the largest families of membrane proteins gathering several medically relevant members that are typically powered by ATP hydrolysis. Here, a Streptococcus pneumoniae ABC transporter responsible for fluoroquinolones resistance in clinical settings, PatA/PatB, is shown to challenge this concept. It clearly favors GTP as the energy supply to expel drugs. This preference is correlated to its ability to hydrolyze GTP more efficiently than ATP, as found with PatA/PatB reconstituted in proteoliposomes or nanodiscs. Importantly, the ATP and GTP concentrations are similar in S. pneumoniae supporting the physiological relevance of GTP as the energy source of this bacterial transporter.
    Mots-clés : B3S, LSOD.

  • N. Romero-Barrios et G. Vert, « Proteasome-independent functions of lysine-63 polyubiquitination in plants », The New Phytologist, vol. 217, nᵒ 3, p. 995-1011, févr. 2018.
    Résumé : Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
    Mots-clés : Autophagy, BIOCELL, UBINET.

  • L. Shi, F. Koll, O. Arnaiz, et J. Cohen, « The Ciliary Protein IFT57 in the Macronucleus of Paramecium », The Journal of Eukaryotic Microbiology, vol. 65, nᵒ 1, p. 12-27, janv. 2018.
    Résumé : The intraflagellar transport IFT57 protein is essential for ciliary growth and maintenance. Also known as HIPPI, human IFT57 can be translocated to the nucleus via a molecular partner of the Huntingtin, Hip1, inducing gene expression changes. In Paramecium tetraurelia, we identified four IFT57 genes forming two subfamilies IFT57A/B and IFT57C/D arising from whole genome duplications. The depletion of proteins of the two subfamilies induced ciliary defects and IFT57A and IFT57C localized in basal bodies and cilia. We observed that IFT57A, but not IFT57C, is also present in the macronucleus and able to traffic toward the developing anlage during autogamy. Analysis of chimeric IFT57A-IFT57C-GFP-tagged proteins allowed us to identify a region of IFT57A necessary for nuclear localization. We studied the localization of the unique IFT57 protein of Paramecium caudatum, a species, which diverged from P. tetraurelia before the whole genome duplications. The P. caudatumIFT57C protein was excluded from the nucleus. We also analyzed whether the overexpression of IFT57A in Paramecium could affect gene transcription as the human protein does in HeLa cells. The expression of some genes was indeed affected by overexpression of IFT57A, but the set of affected genes poorly overlaps the set of genes affected in human cells.
    Mots-clés : ANGE, BIOCELL, BIOCIL, cilia, DBG, HIPPI, IFT57 /HIPPI, intraflagellar transport, intraflagellar transport (IFT), Macronucleus, MICMAC, Paramecium.

  • C. Souaid, S. Bloyer, et D. Noordermeer, « Promoter–Enhancer Looping and Regulatory Neighborhoods », in Nuclear Architecture and Dynamics, Elsevier, 2018, p. 435-456.

  • S. Merlot, V. Sanchez Garcia de la Torre, et M. Hanikenne, « Physiology and Molecular Biology of Trace Element Hyperaccumulation », in Agromining: Farming for Metals, A. Van der Ent, G. Echevarria, A. J. M. Baker, et J. L. Morel, Éd. Cham: Springer International Publishing, 2018, p. 93-116.


  • A. M. Acuña, C. Lemaire, R. van Grondelle, B. Robert, et I. H. M. van Stokkum, « Energy transfer and trapping in Synechococcus WH 7803 », Photosynthesis Research, 2017.
    Résumé : Excitation energy transfer (EET) and trapping in Synechococcus WH 7803 whole cells and isolated photosystem I (PSI) complexes have been studied by time-resolved emission spectroscopy at room temperature (RT) and at 77 K. With the help of global and target analysis, the pathways of EET and the charge separation dynamics have been identified. Energy absorbed in the phycobilisome (PB) rods by the abundant phycoerythrin (PE) is funneled to phycocyanin (PC645) and from there to the core that contains allophycocyanin (APC660 and APC680). Intra-PB EET rates have been estimated to range from 11 to 68/ns. It was estimated that at RT, the terminal emitter of the phycobilisome, APC680, transfers its energy at a rate of 90/ns to PSI and at a rate of 50/ns to PSII. At 77 K, the redshifted Chl a states in the PSI core were heterogeneous, with maximum emission at 697 and 707 nm. In 72% of the PSI complexes, the bulk Chl a in equilibrium with F697 decayed with a main trapping lifetime of 39 ps.
    Mots-clés : B3S, Excitation energy transfer, Global analysis, LBMS, Light harvesting, LPSM, Target analysis.

  • A. Agorio, J. Giraudat, M. W. Bianchi, J. Marion, C. Espagne, L. Castaings, F. Lelièvre, C. Curie, S. Thomine, et S. Merlot, « Phosphatidylinositol 3-phosphate–binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis », Proceedings of the National Academy of Sciences, p. 201702975, avr. 2017.
    Mots-clés : BIOCELL, DYNBSJ, late endosome, metal transport, MINION, NRAMP, phosphatidylinositol 3-phosphate, vacuole.

  • S. Ait-El-Mkadem, M. Dayem-Quere, M. Gusic, A. Chaussenot, S. Bannwarth, B. François, E. C. Genin, K. Fragaki, C. L. M. Volker-Touw, C. Vasnier, V. Serre, K. L. I. van Gassen, F. Lespinasse, S. Richter, G. Eisenhofer, C. Rouzier, F. Mochel, A. De Saint-Martin, M. - T. Abi Warde, M. G. M. de Sain-van der Velde, J. J. M. Jans, J. Amiel, Z. Avsec, C. Mertes, T. B. Haack, T. Strom, T. Meitinger, P. E. Bonnen, R. W. Taylor, J. Gagneur, P. M. van Hasselt, A. Rötig, A. Delahodde, H. Prokisch, S. A. Fuchs, et V. Paquis-Flucklinger, « Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy », American Journal of Human Genetics, vol. 100, nᵒ 1, p. 151-159, 2017.

  • S. Al Dahouk, S. Köhler, A. Occhialini, M. P. Jiménez de Bagüés, J. A. Hammerl, T. Eisenberg, G. Vergnaud, A. Cloeckaert, M. S. Zygmunt, A. M. Whatmore, F. Melzer, K. P. Drees, J. T. Foster, A. R. Wattam, et H. C. Scholz, « Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts », Scientific Reports, vol. 7, p. 44420, 2017.
    Résumé : Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species.
    Mots-clés : LGBMB, MICROBIO.

  • A. K. Alame-Emane, C. Pierre-Audigier, O. C. Aboumegone-Biyogo, A. Nzoghe-Mveang, V. Cadet-Daniel, C. Sola, J. F. Djoba-Siawaya, B. Gicquel, et H. E. Takiff, « The use of GeneXpert remnants for drug resistance profiling and molecular epidemiology of tuberculosis in Libreville, Gabon », Journal of Clinical Microbiology, 2017.
    Résumé : Multidrug (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis are major problems in global health. The GeneXpertMTB/RIF (Xpert) rapidly detects resistance to rifampicin (RIF-R), but detection of the additional resistance that defines MDR and XDR-TB, and for molecular epidemiology, specimen cultures and biosafe infrastructure are generally required. We sought to determine whether the remnants of sputa prepared for Xpert could be used directly to find mutations associated with drug resistance and for molecular epidemiology, and thus provide a precise characterization of MDR-TB cases in countries lacking BSL3 facilities for M. tuberculosis cultures. After sputa were processed and run on the Xpert instrument, the leftovers of the samples prepared for Xpert were used for PCR amplification and sequencing or line probe assay to detect mutations associated with resistance to additional drugs, and for molecular epidemiology with spoligotyping and selective MIRU-VNTR. Of 130 sputum samples from Gabon tested with Xpert, 124 yielded interpretable results, of which 21 were determined to be RIF-R (17%). Amplification and sequencing or line probe assay of the Xpert remnants confirmed 18/21 as MDR: 11/116 (9.5%) new and 7/8 (87%) previously treated TB patients. Spoligotyping and MIRU with hypervariable loci identified an MDR Beijing strain present in five samples. We conclude that the remnants of samples processed for Xpert in PCR reactions can be used to find mutations associated with the resistance to the additional drugs that define MDR and XDR-TB, and to study molecular epidemiology without the need for culturing or biosafe infrastructure.
    Mots-clés : IGEPE, MICROBIO.

  • M. Amjadi, T. Hallaj, H. Asadollahi, Z. Song, M. de Frutos, et N. Hildebrandt, « Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole », Sensors and Actuators B: Chemical, vol. 244, p. 425-432, 2017.

  • J. Ámon, R. Fernández-Martín, E. Bokor, A. Cultrone, J. M. Kelly, M. Flipphi, C. Scazzocchio, et Z. Hamari, « A eukaryotic nicotinate-inducible gene cluster: convergent evolution in fungi and bacteria », Open Biology, vol. 7, nᵒ 12, p. 170199, 2017.
    Mots-clés : convergent evolution, Cys2His2 transcription factor, DIR, nicotinate catabolic gene cluster, nicotinate hydroxylase, SCAZZOCHIO, xanthine dehydrogenase.

  • A. F. Amorim, D. Pinto, L. Kuras, et L. Fernandes, « Absence of Gim proteins, but not GimC complex, alter stress-induced transcription », Biochimica Et Biophysica Acta, 2017.
    Résumé : Saccharomyces cerevisiae GimC (mammalian Prefoldin) is a hexameric (Gim1-6) cytoplasmic complex involved in the folding pathway of actin/tubulin. In contrast to a shared role in GimC complex, we show that absence of individual Gim proteins results in distinct stress responses. No concomitant alteration in F-actin integrity was observed. Transcription of stress responsive genes is altered in gim2Δ, gim3Δ and gim6Δ mutants: TRX2 gene is induced in these mutants but with a profile diverging from type cells, whereas CTT1 and HSP26 fail to be induced. Remaining gimΔ mutants display stress transcript abundance comparable to wild type cells. No alteration in the nuclear localization of the transcriptional activators for TRX2 (Yap1) and CTT1/HSP26 (Msn2) was observed in gim2Δ. In accordance with TRX2 induction, RNA polymerase II occupancy at TRX2 discriminates the wild type from gim2Δ and gim6Δ. In contrast, RNA polymerase II occupancy at CTT1 is similar in wild type and gim2Δ, but higher in gim6Δ. The absence of active RNA polymerase II at CTT1 in gim2Δ, but not in wild type and gim1Δ, explains the respective CTT1 transcript outputs. Altogether our results put forward the need of Gim2, Gim3 and Gim6 in oxidative and osmotic stress activated transcription; others Gim proteins are dispensable. Consequently, the participation of Gim proteins in activated-transcription is independent from the GimC complex.
    Mots-clés : DBG, Gim proteins, PEPS, stress, Transcription regulation.

  • O. Arnaiz, E. Van Dijk, M. Bétermier, M. Lhuillier-Akakpo, A. de Vanssay, S. Duharcourt, E. Sallet, J. Gouzy, et L. Sperling, « Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression », BMC genomics, vol. 18, nᵒ 1, p. 483, 2017.
    Résumé : BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( ). TrUC software is freely distributed under a GNU GPL v3 licence ( ).
    Mots-clés : ANGE, Autogamy, Cap-Seq, Ciliate, DBG, Differential gene expression, Gene annotation, MICMAC, RNA-Seq, TSS.

  • A. Arnal, C. Jacqueline, B. Ujvari, L. Leger, C. Moreno, D. Faugere, A. Tasiemski, C. Boidin-Wichlacz, D. Misse, F. Renaud, J. Montagne, A. Casali, B. Roche, F. Mery, et F. Thomas, « Cancer brings forward oviposition in the fly Drosophila melanogaster », Ecology and Evolution, vol. 7, nᵒ 1, p. 272-276, 2017.
    Résumé : Hosts often accelerate their reproductive effort in response to a parasitic infection, especially when their chances of future reproduction decrease with time from the onset of the infection. Because malignancies usually reduce survival, and hence potentially the fitness, it is expected that hosts with early cancer could have evolved to adjust their life-history traits to maximize their immediate reproductive effort. Despite the potential importance of these plastic responses, little attention has been devoted to explore how cancers influence animal reproduction. Here, we use an experimental setup, a colony of genetically modified flies Drosophila melanogaster which develop colorectal cancer in the anterior gut, to show the role of cancer in altering life-history traits. Specifically, we tested whether females adapt their reproductive strategy in response to harboring cancer. We found that flies with cancer reached the peak period of oviposition significantly earlier (i.e., 2 days) than healthy ones, while no difference in the length and extent of the fecundity peak was observed between the two groups of flies. Such compensatory responses to overcome the fitness-limiting effect of cancer could explain the persistence of inherited cancer-causing mutant alleles in the wild.
    Mots-clés : BIOCELL, cancer, fecundity, life‐history strategy, METABO, reproduction.

  • C. - A. Arnaud, G. Effantin, C. Vivès, S. Engilberge, M. Bacia, P. Boulanger, E. Girard, G. Schoehn, et C. Breyton, « Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection », Nature Communications, vol. 8, nᵒ 1, p. 1953, déc. 2017.
    Résumé : The vast majority of phages, bacterial viruses, possess a tail ensuring host recognition, cell wall perforation and safe viral DNA transfer from the capsid to the host cytoplasm. Long flexible tails are formed from the tail tube protein (TTP) polymerised as hexameric rings around and stacked along the tape measure protein (TMP). Here, we report the crystal structure of T5 TTP pb6 at 2.2 Å resolution. Pb6 is unusual in forming a trimeric ring, although structure analysis reveals homology with all classical TTPs and related tube proteins of bacterial puncturing devices (type VI secretion system and R-pyocin). Structures of T5 tail tubes before and after interaction with the host receptor were determined by cryo-electron microscopy at 6 Å resolution. Comparison of these two structures reveals that host-binding information is not propagated to the capsid through conformational changes in the tail tube, suggesting a role of the TMP in this information transduction process.
    Mots-clés : T5PHAG, VIRO.

  • A. Aubusson-Fleury, G. Balavoine, M. Lemullois, K. Bouhouche, J. Beisson, et F. Koll, « Centrin diversity and basal body patterning across evolution: new insights from Paramecium », Biology Open, 2017.
    Résumé : First discovered in unicellular eukaryotes, centrins play crucial roles in basal body duplication and anchoring mechanisms. While the evolutionary status of the founding members of the family, Centrin2/Vfl2 and Centrin3/cdc31 has long been investigated, the evolutionary origin of other members of the family has received less attention. Using a phylogeny of ciliate centrins, we identify two other centrin families, the ciliary centrins and the centrins present in the contractile filaments (ICL centrins). In this paper, we carry on the functional analysis of still not well known centrins, the ICL1e subfamily identified in Paramecium, and show their requirement for correct basal body anchoring through interactions with Centrin2 and Centrin3. Using Paramecium as well as an Eukaryote-wide sampling of centrins from completely sequenced genomes, we revisited the evolutionary story of centrins. Their phylogeny shows that the centrins associated with the ciliate contractile filaments are widespread in eukaryotic lineages and could be as ancient as Centrin2 and Centrin3.
    Mots-clés : basal body anchoring, basal body assembly, BIOCELL, BIOCIL, centrin evolution, Ciliary centrins, ciliated epithelia polarity.

  • J. Audoux, N. Philippe, R. Chikhi, M. Salson, M. Gallopin, M. Gabriel, J. Le Coz, E. Drouineau, T. Commes, et D. Gautheret, « DE-kupl: exhaustive capture of biological variation in RNA-seq data through k-mer decomposition », Genome Biology, vol. 18, nᵒ 1, p. 243, déc. 2017.
    Résumé : We introduce a k-mer-based computational protocol, DE-kupl, for capturing local RNA variation in a set of RNA-seq libraries, independently of a reference genome or transcriptome. DE-kupl extracts all k-mers with differential abundance directly from the raw data files. This enables the retrieval of virtually all variation present in an RNA-seq data set. This variation is subsequently assigned to biological events or entities such as differential long non-coding RNAs, splice and polyadenylation variants, introns, repeats, editing or mutation events, and exogenous RNA. Applying DE-kupl to human RNA-seq data sets identified multiple types of novel events, reproducibly across independent RNA-seq experiments.
    Mots-clés : DBG, SSFA.

  • H. Azouaoui, C. Montigny, T. Dieudonné, P. Champeil, A. Jacquot, J. L. Vázquez-Ibar, P. Le Maréchal, J. Ulstrup, M. - R. Ash, J. A. Lyons, P. Nissen, et G. Lenoir, « A High and Phosphatidylinositol-4-phosphate (PI4P)-dependent ATPase Activity for the Drs2p/Cdc50p Flippase after Removal of its N- and C-terminal Extensions », Journal of Biological Chemistry, p. jbc.M116.751487, mars 2017.
    Mots-clés : autophosphorylation, B3S, Cdc50 protein, Flippase, inhibition mechanism, limited proteolysis, lipid-protein interaction, LPSM, phosphatidylserine, phosphoinositide.

  • A. Bahloul, E. Pepermans, B. Raynal, N. Wolff, F. Cordier, P. England, S. Nouaille, B. Baron, A. El-Amraoui, J. - P. Hardelin, D. Durand, et C. Petit, « Conformational switch of harmonin, a submembrane scaffold protein of the hair cell mechanoelectrical transduction machinery », FEBS letters, 2017.
    Résumé : Mutations in the gene encoding harmonin, a multi-PDZ domain-containing submembrane protein, cause Usher syndrome type 1 (congenital deafness and balance disorder, as well as early-onset sight loss). The structure of the protein and biological activities of its three different classes of splice isoforms (a, b, and c) remain poorly understood. Combining biochemical and biophysical analyses, we show that harmonin-a1 can switch between open and closed conformations through intramolecular binding of its C-terminal PDZ-binding motif to its N-terminal supramodule NTD-PDZ1 and a flexible PDZ2-PDZ3 linker. This conformational switch presumably extends to most harmonin isoforms, and is expected to have an impact on the interaction with some binding partners, as shown here for cadherin-related 23, another component of the hair cell mechanoelectrical transduction machinery. This article is protected by copyright. All rights reserved.
    Mots-clés : B3S, conformation switch, FAAM, PDZ domain, Usher syndrome.

  • K. Bangpanwimon, J. Sottisuporn, P. Mittraparp-Arthorn, W. Ueaphatthanaphanich, A. Rattanasupar, C. Pourcel, et V. Vuddhakul, « CRISPR-like sequences in Helicobacter pylori and application in genotyping », Gut Pathogens, vol. 9, p. 65, 2017.
    Résumé : Background: Many bacteria and archaea possess a defense system called clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (CRISPR-Cas system) against invaders such as phages or plasmids. This system has not been demonstrated in Helicobacter pylori. The numbers of spacer in CRISPR array differ among bacterial strains and can be used as a genetic marker for bacterial typing. Results: A total of 36 H. pylori isolates were collected from patients in three hospitals located in the central (PBH) and southern (SKH) regions of Thailand. It is of interest that CRISPR-like sequences of this bacterium were detected in vlpC encoded for VacA-like protein C. Virulence genes were investigated and the most pathogenic genotype (cagA vacA s1m1) was detected in 17 out of 29 (58.6%) isolates from PBH and 5 out of 7 (71.4%) from SKH. vapD gene was identified in each one isolate from PBH and SKH. CRISPR-like sequences and virulence genes of 20 isolates of H. pylori obtained in this study were analyzed and CRISPR-virulence typing was constructed and compared to profiles obtained by the random amplification of polymorphic DNA (RAPD) technique. The discriminatory power (DI) of CRISPR-virulence typing was not different from RAPD typing. Conclusion: CRISPR-virulence typing in H. pylori is easy and reliable for epidemiology and can be used for inter-laboratory interpretation.
    Mots-clés : CRISPR-like sequences, CRISPR-virulence typing, Helicobacter pylori, LGBMB, MICROBIO, Orphan CRISPR array, vacA-like gene, vlpC gene.

  • K. Bangpanwimon, J. Sottisuporn, P. Mittraparp-Arthorn, W. Ueaphatthanaphanich, A. Rattanasupar, C. Pourcel, et V. Vuddhakul, « Correction to: CRISPR-like sequences in Helicobacter pylori and application in genotyping », Gut Pathogens, vol. 9, p. 72, 2017.
    Résumé : [This corrects the article DOI: 10.1186/s13099-017-0215-8.].
    Mots-clés : LGBMB, MICROBIO.

  • E. Baquero, A. A. Albertini, H. Raux, A. Abou‐Hamdan, E. Boeri‐Erba, M. Ouldali, L. Buonocore, J. K. Rose, J. Lepault, S. Bressanelli, et Y. Gaudin, « Structural intermediates in the fusion‐associated transition of vesiculovirus glycoprotein », The EMBO Journal, vol. 36, nᵒ 5, p. 679-692, mars 2017.
    Mots-clés : B3S, conformational change, glycoprotein, IMAPP, intermediate structures, membrane fusion, RHABDO, Vesiculovirus, VIRO, VIROEM.

  • S. Barral, Y. Morozumi, H. Tanaka, E. Montellier, J. Govin, M. de Dieuleveult, G. Charbonnier, Y. Couté, D. Puthier, T. Buchou, F. Boussouar, T. Urahama, F. Fenaille, S. Curtet, P. Héry, N. Fernandez-Nunez, H. Shiota, M. Gérard, S. Rousseaux, H. Kurumizaka, et S. Khochbin, « Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells », Molecular Cell, vol. 66, nᵒ 1, p. 89-101.e8, 2017.

  • Q. Barrière, I. Guefrachi, D. Gully, F. Lamouche, O. Pierre, J. Fardoux, C. Chaintreuil, B. Alunni, T. Timchenko, E. Giraud, et P. Mergaert, « Integrated roles of BclA and DD-carboxypeptidase 1 in Bradyrhizobium differentiation within NCR-producing and NCR-lacking root nodules », Scientific Reports, vol. 7, nᵒ 1, p. 9063, 2017.
    Résumé : Legumes harbor in their symbiotic nodule organs nitrogen fixing rhizobium bacteria called bacteroids. Some legumes produce Nodule-specific Cysteine-Rich (NCR) peptides in the nodule cells to control the intracellular bacterial population. NCR peptides have antimicrobial activity and drive bacteroids toward terminal differentiation. Other legumes do not produce NCR peptides and their bacteroids are not differentiated. Bradyrhizobia, infecting NCR-producing Aeschynomene plants, require the peptide uptake transporter BclA to cope with the NCR peptides as well as a specific peptidoglycan-modifying DD-carboxypeptidase, DD-CPase1. We show that Bradyrhizobium diazoefficiens strain USDA110 forms undifferentiated bacteroids in NCR-lacking soybean nodules. Unexpectedly, in Aeschynomene afraspera nodules the nitrogen fixing USDA110 bacteroids are hardly differentiated despite the fact that this host produces NCR peptides, suggesting that USDA110 is insensitive to the host peptide effectors and that nitrogen fixation can be uncoupled from differentiation. In agreement with the absence of bacteroid differentiation, USDA110 does not require its bclA gene for nitrogen fixing symbiosis with these two host plants. Furthermore, we show that the BclA and DD-CPase1 act independently in the NCR-induced morphological differentiation of bacteroids. Our results suggest that BclA is required to protect the rhizobia against the NCR stress but not to induce the terminal differentiation pathway.
    Mots-clés : MICROBIO, PBI.

  • L. Becker, S. Bellow, V. Carré, G. Latouche, A. Poutaraud, D. Merdinoglu, S. C. Brown, Z. G. Cerovic, et P. Chaimbault, « Correlative Analysis of Fluorescent Phytoalexins by Mass Spectrometry Imaging and Fluorescence Microscopy in Grapevine Leaves », Analytical Chemistry, 2017.
    Résumé : Plant response to their environment stresses is a complex mechanism involving secondary metabolites. Stilbene phytoalexins, namely resveratrol, pterostilbene, piceids and viniferins play a key role in grapevine (Vitis vinifera) leaf defense. Despite their well-established qualities, conventional analyses such as HPLC-DAD or LC-MS lose valuable information on metabolite localization during the extraction process. To overcome this issue, a correlative analysis combining mass spectroscopy imaging (MSI) and fluorescence imaging was developed to localize in situ stilbenes on the same stressed grapevine leaves. High-resolution images of the stilbene fluorescence provided by macroscopy were supplemented by specific distributions and structural information concerning resveratrol, pterostilbene, and piceids obtained by MSI. The two imaging techniques led to consistent and complementary data on the stilbene spatial distribution for the two stresses addressed: UV-C irradiation and infection by Plasmopara viticola. Results emphasize that grapevine leaves react differently depending on the stress. A rather uniform synthesis of stilbenes is induced after UV-C irradiation, whereas a more localized synthesis of stilbenes in stomata guard cells and cell walls is induced by P. viticola infection. Finally, this combined imaging approach could be extended to map phytoalexins of various plant tissues with resolution approaching the cellular level.
    Mots-clés : IMAGIF, PF, PHOT.

  • A. Belyy, U. Mechold, L. Renault, et D. Ladant, « ExoY, an actin-activated nucleotidyl cyclase toxin from P. aeruginosa: A minireview », Toxicon: Official Journal of the International Society on Toxinology, déc. 2017.
    Résumé : ExoY is one of four well-characterized Pseudomonas aeruginosa type 3 secretion system (T3SS) effectors. It is a nucleotidyl cyclase toxin that is inactive inside the bacteria, but becomes potently activated once it is delivered into the eukaryotic target cells. Recently, filamentous actin was identified as the eukaryotic cofactor that stimulates specifically ExoY enzymatic activity by several orders of magnitude. In this review, we discuss recent advances in understanding the biochemistry of nucleotidyl cyclase activity of ExoY and its regulation by interaction with filamentous actin.
    Mots-clés : ACTIN.

  • H. Bengueddach, M. Lemullois, A. Aubusson-Fleury, et F. Koll, « Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3 », Cilia, vol. 6, nᵒ 1, 2017.

  • L. Benkaidali, F. André, G. Moroy, B. Tangour, F. Maurel, et M. Petitjean, « The Cytochrome P450 3A4 Has Three Major Conformations: New Clues to Drug Recognition by this Promiscuous Enzyme », Molecular Informatics, 2017.
    Résumé : We computed the channels of the 3A4 isoform of the cytochrome P450 3A4 (CYP) on the basis of 24 crystal structures extracted from the Protein Data Bank (PDB). We identified three major conformations (denoted C, O1 and O2) using an enhanced version of the CCCPP software that we developed for the present work, while only two conformations (C and O(2) ) are considered in the literature. We established the flowchart of definition of these three conformations in function of the structural and physicochemical parameters of the ligand. The channels are characterized with qualitative and quantitative parameters, and not only with their surrounding secondary structures as it is usually done in the literature.
    Mots-clés : active site access channels, B3S, conformations, CYP 3A4 ligands, cytochromes P450, drug-drug interactions, LSOD.

  • S. Berlivet, I. Hmitou, H. Picaud, et M. Gérard, « Efficient Depletion of Essential Gene Products for Loss-of-Function Studies in Embryonic Stem Cells », Methods in Molecular Biology (Clifton, N.J.), vol. 1622, p. 91-100, 2017.
    Résumé : The development of the CRISPR/Cas9 technology has provided powerful methods to target genetic alterations. However, investigating the function of genes essential for cell survival remains problematic, because genetic ablation of these genes results in cell death. As a consequence, cells recombined at the targeted gene and fully depleted of the gene product cannot be obtained. RNA interference is well suited for the study of essential genes, but this approach often results in a partial depletion of the targeted gene product, which can lead to misinterpretations. We previously developed the pHYPER shRNA vector, a high efficiency RNA interference vector, which is based on a 2.5-kb mouse genomic fragment encompassing the H1 gene. We provide here a pHYPER-based protocol optimized to study the function of essential gene products in mouse embryonic stem cells.
    Mots-clés : DBG, Electroporation, Embryonic stem cell, Essential genes, pHYPER, Puromycin selection, REMOD, RNA Interference, shRNA.

  • A. Bersweiler, B. D'Autréaux, H. Mazon, A. Kriznik, G. Belli, A. Delaunay-Moisan, M. B. Toledano, et S. Rahuel-Clermont, « A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2 signaling », Nature Chemical Biology, 2017.
    Résumé : In Saccharomyces cerevisiae, Yap1 regulates an H2O2-inducible transcriptional response that controls cellular H2O2 homeostasis. H2O2 activates Yap1 by oxidation through the intermediary of the thiol peroxidase Orp1. Upon reacting with H2O2, Orp1 catalytic cysteine oxidizes to a sulfenic acid, which then engages into either an intermolecular disulfide with Yap1, leading to Yap1 activation, or an intramolecular disulfide that commits the enzyme into its peroxidatic cycle. How the first of these two competing reactions, which is kinetically unfavorable, occurs was previously unknown. We show that the Yap1-binding protein Ybp1 brings together Orp1 and Yap1 into a ternary complex that selectively activates condensation of the Orp1 sulfenylated cysteine with one of the six Yap1 cysteines while inhibiting Orp1 intramolecular disulfide formation. We propose that Ybp1 operates as a scaffold protein and as a sulfenic acid chaperone to provide specificity in the transfer of oxidizing equivalents by a reactive sulfenic acid species.
    Mots-clés : BIOCELL, SOC.

0 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | ... | 900

--- Exporter la sélection au format

publié le , mis à jour le