Rechercher






Nos tutelles

CNRS

Nos partenaires


Accueil > Plateformes > Plateformes IMAGERIE-GIF : Cytométrie, Microscopie Electronique & Microscopie Photonique > Publications & Communications

pubmed : bourge mickael

Site web ajouté le

NCBI : db=pubmed ; Term=bourge mickael

Articles syndiqués

  • The evolutionary dynamics of ancient and recent polyploidy in the African semiaquatic species of the legume genus Aeschynomene.

    31 janvier, par Chaintreuil C, Gully D, Hervouet C, Tittabutr P, Randriambanona H, Brown SC, Lewis GP, Bourge M, Cartieaux F, Boursot M, Ramanankierana H, D'Hont A, Teaumroong N, Giraud E, Arrighi JF
    Related Articles

    The evolutionary dynamics of ancient and recent polyploidy in the African semiaquatic species of the legume genus Aeschynomene.

    New Phytol. 2016 Aug;211(3):1077-91

    Authors: Chaintreuil C, Gully D, Hervouet C, Tittabutr P, Randriambanona H, Brown SC, Lewis GP, Bourge M, Cartieaux F, Boursot M, Ramanankierana H, D'Hont A, Teaumroong N, Giraud E, Arrighi JF

    Abstract
    The legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process. In the second clade, the species use a Nod-dependent symbiotic process and some of them display a profuse stem nodulation as exemplified in the African Aeschynomene afraspera. To facilitate the molecular analysis of the symbiotic characteristics of such legumes, we took an integrated molecular and cytogenetic approach to track occurrences of polyploidy events and to analyze their impact on the evolution of the African species of Aeschynomene. Our results revealed two rounds of polyploidy: a paleopolyploid event predating the African group and two neopolyploid speciations, along with significant chromosomal variations. Hence, we found that A. afraspera (8x) has inherited the contrasted genomic properties and the stem-nodulation habit of its parental lineages (4x). This study reveals a comprehensive picture of African Aeschynomene diversification. It notably evidences a history that is distinct from the diploid Nod-independent clade, providing clues for the identification of the specific determinants of the Nod-dependent and Nod-independent symbiotic processes, and for comparative analysis of stem nodulation.

    PMID: 27061605 [PubMed - indexed for MEDLINE]

  • Transcriptome profiling of sorted endoreduplicated nuclei from tomato fruits : how global shift in expression ascribed to DNA ploidy influences RNA-Seq data normalization and interpretation.

    26 novembre 2017, par Pirrello J, Deluche C, Frangne N, Gévaudant F, Maza E, Djari A, Bourge M, Renaudin JP, Brown S, Bowler C, Zouine M, Chevalier C, Gonzalez N

    Transcriptome profiling of sorted endoreduplicated nuclei from tomato fruits: how global shift in expression ascribed to DNA ploidy influences RNA-Seq data normalization and interpretation.

    Plant J. 2017 Nov 24;:

    Authors: Pirrello J, Deluche C, Frangne N, Gévaudant F, Maza E, Djari A, Bourge M, Renaudin JP, Brown S, Bowler C, Zouine M, Chevalier C, Gonzalez N

    Abstract
    As part of normal development most eukaryotic organisms ranging from insects to mammals and plants display variations in nuclear ploidy levels resulting from somatic endopolyploidy. Endoreduplication is the major source of endopolyploidy in higher plants. Endoreduplication is a remarkable characteristic of the fleshy pericarp tissue of developing tomato fruits, where it establishes a highly integrated cellular system that acts as a morphogenetic factor supporting cell growth. However, the functional significance of endoreduplication is not fully understood. Although endoreduplication is thought to increase metabolic activity due to a global increase in transcription, the issue of gene-specific ploidy-regulated transcription remains opened. To investigate the influence of endoreduplication on transcription in tomato fruit, we tested the feasibility of a RNA-Seq approach using total nuclear RNA extracted from purified populations of flow cytometry-sorted nuclei based on their DNA content. Here we show that cell-based approaches to study RNA-Seq profiles need to take into account the putative global shift in expression between samples for correct analysis and interpretation of the data. From ploidy-specific expression profiles we found that the activity of cells inside the pericarp is related both to the ploidy level and their tissue location. This article is protected by copyright. All rights reserved.

    PMID: 29172253 [PubMed - as supplied by publisher]