Nos tutelles

Nos partenaires

Accueil > Départements > Biochimie, Biophysique et Biologie Structurale > Françoise OCHSENBEIN & Raphaël GUEROIS : Assemblage moléculaire et intégrité du génome

Publications de l’équipe


  • M. Bakail, A. Gaubert, J. Andreani, G. Moal, G. Pinna, E. Boyarchuk, M. - C. Gaillard, R. Courbeyrette, C. Mann, J. - Y. Thuret, B. Guichard, B. Murciano, N. Richet, A. Poitou, C. Frederic, M. - H. Le Du, M. Agez, C. Roelants, Z. A. Gurard-Levin, G. Almouzni, N. Cherradi, R. Guerois, et F. Ochsenbein, « Design on a Rational Basis of High-Affinity Peptides Inhibiting the Histone Chaperone ASF1 », Cell Chemical Biology, sept. 2019.
    Résumé : Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.
    Mots-clés : AMIG, B3S, Cancer, Cell Penetrating Peptide, Chromatin, DBG, Drug Design, Epigenetics, INTGEN, PARI, Peptide Inhibitor, PF, Protein Binding, Protein-Protein Interaction, Rosetta Design, SEN, X-Ray Crystallography.

  • M. Bakail, S. Rodriguez-Marin, Z. Hegedues, M. E. Perrin, F. Ochsenbein, et A. J. Wilson, « Recognition of ASF1 by Using Hydrocarbon-Constrained Peptides », Chembiochem, vol. 20, nᵒ 7, p. 891-895, avr. 2019.
    Résumé : Inhibiting the histone H3-ASF1 (anti-silencing function 1) protein-protein interaction (PPI) represents a potential approach for treating numerous cancers. As an alpha-helix-mediated PPI, constraining the key histone H3 helix (residues 118-135) is a strategy through which chemical probes might be elaborated to test this hypothesis. In this work, variant H3(118-135) peptides bearing pentenylglycine residues at the i and i+4 positions were constrained by olefin metathesis. Biophysical analyses revealed that promotion of a bioactive helical conformation depends on the position at which the constraint is introduced, but that the potency of binding towards ASF1 is unaffected by the constraint and instead that enthalpy-entropy compensation occurs.
    Mots-clés : AMIG, B3S, chemical biology, complex, constrained peptides, helix, histone chaperones, modulators, protein surface recognition, protein-protein interactions histone chaperonnes constrained peptides protein surface recognition chemical biology, protein-protein interactions, replication, stapled peptides, structural basis.

  • J. Fischböck-Halwachs, S. Singh, M. Potocnjak, G. Hagemann, V. Solis-Mezarino, S. Woike, M. Ghodgaonkar-Steger, F. Weissmann, L. D. Gallego, J. Rojas, J. Andreani, A. Köhler, et F. Herzog, « The COMA complex interacts with Cse4 and positions Sli15/Ipl1 at the budding yeast inner kinetochore », eLife, vol. 8, p. e42879, mai 2019.
    Résumé : Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.
    Mots-clés : AMIG, aurora B, aurora b kinase, B3S, biochemistry, cell biology, cenp-a nucleosomes, centromeric nucleosome, chemical biology, chemical crosslinking, chromosomal passenger complex, chromosome segregation, error correction, feedback control, kinetochore, mass spectrometry, mitotic checkpoint, molecular-basis, protein complex, rwd domain, S. cerevisiae, saccharomyces-cerevisiae, spindle.

  • J. Gantner, J. Ordon, C. Kretschmer, R. Guerois, et J. Stuttmann, « An EDS1-SAG101 Complex is Essential for TNL-mediated Immunity in Nicotiana benthamiana », The Plant Cell, juill. 2019.
    Résumé : Heterodimeric complexes containing the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) are regarded as central regulators of plant innate immunity. In this context, a complex of EDS1 with PHYTOALEXIN DEFICIENT4 (PAD4) is required for basal resistance and signaling downstream of immune receptors containing an N-terminal Toll-interleukin-1 receptor-like domain (TNLs) in Arabidopsis thaliana. Here we analyze EDS1 functions in the model Solanaceous plant Nicotiana benthamiana (Nb). Stable Nb mutants deficient in EDS1 complexes are not impaired in basal resistance, a finding which contradicts a general role for EDS1 in immunity. In Nb, PAD4 demonstrated no detectable immune functions, but TNL-mediated resistance responses required EDS1 complexes incorporating a SENESCENCE ASSOCIATED GENE101 (SAG101) isoform. Intriguingly, SAG101 is restricted to those genomes also encoding TNL receptors, and we propose it may be required for TNL-mediated immune signaling in most plants, except the Brassicaceae. Transient complementation in Nb was used for accelerated mutational analyses while avoiding complex biotic interactions. We identify a large surface essential for EDS1-SAG101 immune functions, which extends from the N-terminal lipase domains to the C-terminal EP domains and might mediate interaction partner recruitment. Further, this work demonstrates the value of genetic resources in Nb, which will facilitate elucidation of EDS1 functions.
    Mots-clés : AMIG, B3S.

  • M. Genera, D. Samson, B. Raynal, A. Haouz, B. Baron, C. Simenel, R. Guerois, N. Wolff, et C. Caillet-Saguy, « Structural and functional characterization of the PDZ domain of the human phosphatase PTPN3 and its interaction with the human papillomavirus E6 oncoprotein », Scientific Reports, vol. 9, nᵒ 1, p. 7438, mai 2019.
    Résumé : The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a PDZ (PSD-95/Dlg/ZO-1) domain-containing phosphatase with a tumor-suppressive or a tumor-promoting role in many cancers. Interestingly, the high-risk genital human papillomavirus (HPV) types 16 and 18 target the PDZ domain of PTPN3. The presence of a PDZ binding motif (PBM) on E6 confers interaction with a number of different cellular PDZ domain-containing proteins and is a marker of high oncogenic potential. Here, we report the molecular basis of interaction between the PDZ domain of PTPN3 and the PBM of the HPV E6 protein. We combined biophysical, NMR and X-ray experiments to investigate the structural and functional properties of the PDZ domain of PTPN3. We showed that the C-terminal sequences from viral proteins encompassing a PBM interact with PTPN3-PDZ with similar affinities to the endogenous PTPN3 ligand MAP kinase p38γ. PBM binding stabilizes the PDZ domain of PTPN3. We solved the X-ray structure of the PDZ domain of PTPN3 in complex with the PBM of the HPV E6 protein. The crystal structure and the NMR chemical shift mapping of the PTPN3-PDZ/peptide complex allowed us to pinpoint the main structural determinants of recognition of the C-terminal sequence of the E6 protein and the long-range perturbations induced upon PBM binding.
    Mots-clés : AMIG, B3S, binding, complex, proteins, receptor, system.

  • J. Godau, L. P. Ferretti, A. Trenner, E. Dubois, C. von Aesch, A. Marmignon, L. Simon, A. Kapusta, R. Guérois, M. Bétermier, et A. A. Sartori, « Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair », DNA repair, vol. 77, p. 96-108, mars 2019.
    Résumé : DNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR). Here, we applied bioinformatics and genetic analysis to identify Paramecium tetraurelia CtIP (PtCtIP), the smallest known Sae2/Ctp1/CtIP ortholog, as a key factor for the completion of meiosis and the recovery of viable sexual progeny. Using in vitro assays, we find that purified recombinant PtCtIP preferentially binds to double-stranded DNA substrates but does not contain intrinsic nuclease activity. Moreover, mutation of the evolutionarily conserved C-terminal 'RHR' motif abrogates DNA binding of PtCtIP but not its ability to functionally interact with Mre11. Translating our findings into mammalian cells, we provide evidence that disruption of the 'RHR' motif abrogates accumulation of human CtIP at sites of DSBs. Consequently, cells expressing the DNA binding mutant CtIPR837A/R839A are defective in DSB resection and HR. Collectively, our work highlights minimal structural requirements for CtIP protein family members to facilitate the processing of DSBs, thereby maintaining genome stability as well as enabling sexual reproduction.
    Mots-clés : AMIG, B3S, CtIP, ctp1, damage response, DBG, DNA double-strand breaks, DNA end resection, end-resection, endonuclease, gene, Homologous recombination, human ctip, Meiosis, MICMAC, mre11 complex, Paramecium tetraurelia, protein, rad32(mre11) nuclease, sae2.

  • J. Hardy, D. Dai, A. A. Saada, A. Teixeira-Silva, L. Dupoiron, F. Mojallali, K. Fréon, F. Ochsenbein, B. Hartmann, et S. Lambert, « Histone deposition promotes recombination-dependent replication at arrested forks », PLOS Genetics, vol. 15, nᵒ 10, p. e1008441, oct. 2019.
    Résumé : Replication stress poses a serious threat to genome stability. Recombination-Dependent-Replication (RDR) promotes DNA synthesis resumption from arrested forks. Despite the identification of chromatin restoration pathways after DNA repair, crosstalk coupling RDR and chromatin assembly is largely unexplored. The fission yeast Chromatin Assembly Factor-1, CAF-1, is known to promote RDR. Here, we addressed the contribution of histone deposition to RDR. We expressed a mutated histone, H3-H113D, to genetically alter replication-dependent chromatin assembly by destabilizing (H3-H4)2 tetramer. We established that DNA synthesis-dependent histone deposition, by CAF-1 and Asf1, promotes RDR by preventing Rqh1-mediated disassembly of joint-molecules. The recombination factor Rad52 promotes CAF-1 binding to sites of recombination-dependent DNA synthesis, indicating that histone deposition occurs downstream Rad52. Histone deposition and Rqh1 activity act synergistically to promote cell resistance to camptothecin, a topoisomerase I inhibitor that induces replication stress. Moreover, histone deposition favors non conservative recombination events occurring spontaneously in the absence of Rqh1, indicating that the stabilization of joint-molecules by histone deposition also occurs independently of Rqh1 activity. These results indicate that histone deposition plays an active role in promoting RDR, a benefit counterbalanced by stabilizing at-risk joint-molecules for genome stability.
    Mots-clés : AMIG, B3S, Chromatin, DNA repair, DNA replication, DNA synthesis, Histones, Nucleosomes, Saccharomyces cerevisiae, Schizosaccharomyces pombe.

  • J. Lisboa, L. Celmal, D. Sanchez, M. Marquis, J. Andreani, R. Guerois, F. Ochsenbein, D. Durand, S. Marsin, P. Cuniasse, J. P. Radicella, et S. Queyillon-Cheruel, « The C-terminal domain of HpDprA is a DNA-binding winged helix domain that does not bind double-stranded DNA », Febs Journal, vol. 286, nᵒ 10, p. 1941-1958, mai 2019.
    Résumé : DNA-processing protein A, a ubiquitous multidomain DNA-binding protein, plays a crucial role during natural transformation in bacteria. Here, we carried out the structural analysis of DprA from the human pathogen Helicobacter pylori by combining data issued from the 1.8-angstrom resolution X-ray structure of the Pfam02481 domain dimer (RF), the NMR structure of the carboxy terminal domain (CTD), and the low-resolution structure of the full-length DprA dimer obtained in solution by SAXS. In particular, we sought a molecular function for the CTD, a domain that we show here is essential for transformation in H.pylori. Albeit its structural homology to winged helix DNA-binding motifs, we confirmed that the isolated CTD does not interact with ssDNA nor with dsDNA. The key R52 and K137 residues of RF are crucial for these two interactions. Search for sequences harboring homology to either HpDprA or Rhodopseudomonas palustris DprA CTDs led to the identification of conserved patches in the two CTD. Our structural study revealed the similarity of the structures adopted by these residues in RpDprA CTD and HpDprA CTD. This argues for a conserved, but yet to be defined, CTD function, distinct from DNA binding.
    Mots-clés : AMIG, B3S, bacillus-subtilis dpra, DprA, FAAM, Helicobacter pylori, helicobacter-pylori, INTGEN, natural transformation, nmr structure determination, protein, reca, recognition, recombination, sequence, WH DNA binding motif, WH DNA-binding motif, xplor-nih.

  • C. Midonet, S. Miele, E. Paly, R. Guerois, et F. - X. Barre, « The TLCΦ satellite phage harbors a Xer recombination activation factor », Proceedings of the National Academy of Sciences of the United States of America, août 2019.
    Résumé : The circular chromosomes of bacteria can be concatenated into dimers by homologous recombination. Dimers are solved by the addition of a cross-over at a specific chromosomal site, dif, by 2 related tyrosine recombinases, XerC and XerD. Each enzyme catalyzes the exchange of a specific pair of strands. Some plasmids exploit the Xer machinery for concatemer resolution. Other mobile elements exploit it to integrate into the genome of their host. Chromosome dimer resolution is initiated by XerD. The reaction is under the control of a cell-division protein, FtsK, which activates XerD by a direct contact. Most mobile elements exploit FtsK-independent Xer recombination reactions initiated by XerC. The only notable exception is the toxin-linked cryptic satellite phage of Vibrio cholerae, TLCΦ, which integrates into and excises from the dif site of the primary chromosome of its host by a reaction initiated by XerD. However, the reaction remains independent of FtsK. Here, we show that TLCΦ carries a Xer recombination activation factor, XafT. We demonstrate in vitro that XafT activates XerD catalysis. Correspondingly, we found that XafT specifically interacts with XerD. We further show that integrative mobile elements exploiting Xer (IMEXs) encoding a XafT-like protein are widespread in gamma- and beta-proteobacteria, including human, animal, and plant pathogens.
    Mots-clés : AMIG, B3S, cholera, DBG, EMC2, IMEX, integrative mobile element, lysogenic conversion, site-specific recombination.
    Pièce jointe Full Text 1 Mo (source)

  • C. Midonet, S. Miele, E. Paly, R. Guerois, et F. - X. Barre, « Insights into TLCΦ lysogeny: A twist in the mechanism of IMEX integration », Proceedings of the National Academy of Sciences, vol. 116, nᵒ 37, p. 18159-18161, sept. 2019.
    Résumé : Many organisms have established symbiotic relationships with acquired mobile genetic elements (MGEs) integrated in their genomes (1). MGEs spread among genomes within and across microbial species through horizontal gene transfer and, once integrated into host chromosome, are disseminated vertically to the progeny, causing rapid evolution of drug resistance, pathogenicity, and virulence traits (2, 3). The MGEs that integrates into the host bacterial chromosomes (IMGEs) either carry their own DNA integration machineries or exploit machineries already existing in the host organisms for integration (4). The latter elements are of interest, in part, because of their contribution to pathogenesis, antimicrobial resistance, and other medically relevant properties (5, 6). One of the host site-specific recombination systems frequently exploited by IMGEs is the widely distributed bacterial chromosome dimer-resolving Xer recombination system, a system that recombines chromosomes at dif site located near where DNA replication terminates (7). As in all organisms, during DNA replication of bacteria, many DNA damages need to be repaired by homologous recombination reaction. For bacteria having circular chromosomes, this often generates circular dimer chromosome, causing problems when the cell divides. Hence, when a pair of unresolved chromosome dimer junctions get trapped at the closing cell division septum, the pair of dif sites with XerC and XerD recombinases bound across the recombination junction encounter FtsK DNA translocation pump, a component of the closing septum complex, whose job is to clear trapped DNA out of the septum. This encounter triggers initiation of recombination by activating XerD to carry out the first strand exchange, generating a Holliday junction recombination intermediate, which is resolved by XerC-mediated second pair of strand exchange (8). XerC is an efficient resolver of the recombination intermediate but a poor recombination initiator. Without FtsK activation, Xer remains essentially silent, avoiding formation of chromosome dimer out of 2 separable replicated … [↵][1]1Email: bhabatosh{at} [1]: #xref-corresp-1-1
    Mots-clés : AMIG, B3S, DBG, EMC2.

  • M. Omrane, A. S. Camara, C. Taveneau, N. Benzoubir, T. Tubiana, J. Yu, R. Guérois, D. Samuel, B. Goud, C. Poüs, S. Bressanelli, R. C. Garratt, A. R. Thiam, et A. Gassama-Diagne, « Septin 9 has Two Polybasic Domains Critical to Septin Filament Assembly and Golgi Integrity », iScience, vol. 13, p. 138-153, févr. 2019.
    Résumé : Septins are GTP-binding proteins involved in several membrane remodeling mechanisms. They associate with membranes, presumably using a polybasic domain (PB1) that interacts with phosphoinositides (PIs). Membrane-bound septins assemble into microscopic structures that regulate membrane shape. How septins interact with PIs and then assemble and shape membranes is poorly understood. Here, we found that septin 9 has a second polybasic domain (PB2) conserved in the human septin family. Similar to PB1, PB2 binds specifically to PIs, and both domains are critical for septin filament formation. However, septin 9 membrane association is not dependent on these PB domains, but on putative PB-adjacent amphipathic helices. The presence of PB domains guarantees protein enrichment in PI-contained membranes, which is critical for PI-enriched organelles. In particular, we found that septin 9 PB domains control the assembly and functionality of the Golgi apparatus. Our findings offer further insight into the role of septins in organelle morphology.
    Mots-clés : AMIG, B3S, Cell Biology, Functional Aspects of Cell Biology, IMAAP, Membrane Architecture, Molecular Interaction.


  • N. Abdollahi, A. Albani, E. Anthony, A. Baud, M. Cardon, R. Clerc, D. Czernecki, R. Conte, L. David, A. Delaune, S. Djerroud, P. Fourgoux, N. Guiglielmoni, J. Laurentie, N. Lehmann, C. Lochard, R. Montagne, V. Myrodia, V. Opuu, E. Parey, L. Polit, S. Privé, C. Quignot, M. Ruiz-Cuevas, M. Sissoko, N. Sompairac, A. Vallerix, V. Verrecchia, M. Delarue, R. Guérois, Y. Ponty, S. Sacquin-Mora, A. Carbone, C. Froidevaux, S. Le Crom, O. Lespinet, M. Weigt, S. Abboud, J. Bernardes, G. Bouvier, C. Dequeker, A. Ferré, P. Fuchs, G. Lelandais, P. Poulain, H. Richard, H. Schweke, E. Laine, et A. Lopes, « Meet-U: Educating through research immersion », PLoS computational biology, vol. 14, nᵒ 3, p. e1005992, mars 2018.
    Résumé : We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at
    Mots-clés : AMIG, B3S, BIM, DBG.

  • C. Adam, R. Guérois, A. Citarella, L. Verardi, F. Adolphe, C. Béneut, V. Sommermeyer, C. Ramus, J. Govin, Y. Couté, et V. Borde, « The PHD finger protein Spp1 has distinct functions in the Set1 and the meiotic DSB formation complexes », PLOS Genetics, vol. 14, nᵒ 2, p. e1007223, févr. 2018.

  • A. Berto, J. Yu, S. Morchoisne-Bolhy, C. Bertipaglia, R. Vallee, J. Dumont, F. Ochsenbein, R. Guerois, et V. Doye, « Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores », EMBO reports, vol. 19, nᵒ 5, mai 2018.
    Résumé : Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 β-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.
    Mots-clés : AMIG, B3S, Cenp‐F, in silico modeling, kinetochores, mitosin, nuclear pore.

  • A. De Muyt, A. Pyatnitskaya, J. Andréani, L. Ranjha, C. Ramus, R. Laureau, A. Fernandez-Vega, D. Holoch, E. Girard, J. Govin, R. Margueron, Y. Couté, P. Cejka, R. Guérois, et V. Borde, « A meiotic XPF–ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation », Genes & Development, vol. 32, nᵒ 3-4, p. 283-296, févr. 2018.

  • J. B. Fernandes, M. Duhamel, M. Seguéla-Arnaud, N. Froger, C. Girard, S. Choinard, V. Solier, N. De Winne, G. De Jaeger, K. Gevaert, P. Andrey, M. Grelon, R. Guerois, R. Kumar, et R. Mercier, « FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination », PLOS Genetics, vol. 14, nᵒ 4, p. e1007317, avr. 2018.

  • R. Grzela, J. Nusbaum, S. Fieulaine, F. Lavecchia, M. Desmadril, N. Nhiri, A. Van Dorsselaer, S. Cianferani, E. Jacquet, T. Meinnel, et C. Giglione, « Peptide deformylases from Vibrio parahaemolyticus phage and bacteria display similar deformylase activity and inhibitor binding clefts », Biochimica Et Biophysica Acta, vol. 1866, nᵒ 2, p. 348-355, févr. 2018.
    Résumé : Unexpected peptide deformylase (PDF) genes were recently retrieved in numerous marine phage genomes. While various hypotheses dealing with the occurrence of these intriguing sequences have been made, no further characterization and functional studies have been described thus far. In this study, we characterize the bacteriophage Vp16 PDF enzyme, as representative member of the newly identified C-terminally truncated viral PDFs. We show here that conditions classically used for bacterial PDFs lead to an enzyme exhibiting weak activity. Nonetheless, our integrated biophysical and biochemical approaches reveal specific effects of pH and metals on Vp16 PDF stability and activity. A novel purification protocol taking in account these data allowed strong improvement of Vp16 specific activity to values similar to those of bacterial PDFs. We next show that Vp16PDF is as sensitive to the natural inhibitor compound of PDFs, actinonin, as bacterial PDFs. Comparison of the 3D structures of Vp16 and E. coli PDFs bound to actinonin also reveals that both PDFs display identical substrate binding mode. We conclude that bacteriophage Vp16 PDF protein has functional peptide deformylase activity and we suggest that encoded phage PDFs might be important for viral fitness.
    Mots-clés : AMIG, B3S, DBG, Enzyme mechanism, IMAPP, MIP, N-terminal methionine excision, Peptide deformylase, PF, PIM, PROMTI, Structure, Virus.

  • G. Hutinet, A. Besle, O. Son, S. McGovern, R. Guerois, M. - A. Petit, F. Ochsenbein, et F. Lecointe, « Sak4 of Phage HK620 Is a RecA Remote Homolog With Single-Strand Annealing Activity Stimulated by Its Cognate SSB Protein », Frontiers in Microbiology, vol. 9, p. 743, 2018.
    Résumé : Bacteriophages are remarkable for the wide diversity of proteins they encode to perform DNA replication and homologous recombination. Looking back at these ancestral forms of life may help understanding how similar proteins work in more sophisticated organisms. For instance, the Sak4 family is composed of proteins similar to the archaeal RadB protein, a Rad51 paralog. We have previously shown that Sak4 allowed single-strand annealing in vivo, but only weakly compared to the phage λ Redβ protein, highlighting putatively that Sak4 requires partners to be efficient. Here, we report that the purified Sak4 of phage HK620 infecting Escherichia coli is a poorly efficient annealase on its own. A distant homolog of SSB, which gene is usually next to the sak4 gene in various species of phages, highly stimulates its recombineering activity in vivo. In vitro, Sak4 binds single-stranded DNA and performs single-strand annealing in an ATP-dependent way. Remarkably, the single-strand annealing activity of Sak4 is stimulated by its cognate SSB. The last six C-terminal amino acids of this SSB are essential for the binding of Sak4 to SSB-covered single-stranded DNA, as well as for the stimulation of its annealase activity. Finally, expression of sak4 and ssb from HK620 can promote low-level of recombination in vivo, though Sak4 and its SSB are unable to promote strand exchange in vitro. Regarding its homology with RecA, Sak4 could represent a link between two previously distinct types of recombinases, i.e., annealases that help strand exchange proteins and strand exchange proteins themselves.
    Mots-clés : AMIG, annealase, B3S, bacteriophage, Rad51 paralog, RecA, recombineering, Sak4, SSB, strand exchange protein.

  • L. Lecoq, S. Wang, T. Wiegand, S. Bressanelli, M. Nassal, B. H. Meier, et A. Böckmann, « Solid-state [13C-15N] NMR resonance assignment of hepatitis B virus core protein », Biomolecular NMR assignments, vol. 12, nᵒ 1, p. 205-214, avr. 2018.
    Résumé : Each year, nearly 900,000 deaths are due to serious liver diseases caused by chronic hepatitis B virus infection. The viral particle is composed of an outer envelope and an inner icosahedral nucleocapsid formed by multiple dimers of a ~ 20 kDa self-assembling core protein (Cp). Here we report the solid-state 13C and 15N resonance assignments of the assembly domain, Cp149, of the core protein in its capsid form. A secondary chemical shift analysis of the 140 visible residues suggests an overall alpha-helical three-dimensional fold matching that derived for Cp149 from the X-ray crystallography of the capsid, and from solution-state NMR of the Cp149 dimer. Interestingly, however, at three distinct regions the chemical shifts in solution differ significantly between core proteins in the capsid state versus in the dimer state, strongly suggesting the respective residues to be involved in capsid assembly.
    Mots-clés : AMIG, Assignments, B3S, Core protein, Hepatitis B virus, IMAPP, Nucleocapsid, Solid-state NMR.

  • E. Ma, P. Dupaigne, L. Maloisel, R. Guerois, E. Le Cam, et E. Coïc, « Rad52-Rad51 association is essential to protect Rad51 filaments against Srs2, but facultative for filament formation », eLife, vol. 7, juill. 2018.
    Résumé : Homology search and strand exchange mediated by Rad51 nucleoprotein filaments are key steps of the homologous recombination process. In budding yeast, Rad52 is the main mediator of Rad51 filament formation, thereby playing an essential role. The current model assumes that Rad51 filament formation requires the interaction between Rad52 and Rad51. However, we report here that Rad52 mutations that disrupt this interaction do not affect γ-ray- or HO endonuclease-induced gene conversion frequencies. In vivo and in vitro studies confirmed that Rad51 filaments formation is not affected by these mutations. Instead, we found that Rad52-Rad51 association makes Rad51 filaments toxic in Srs2-deficient cells after exposure to DNA damaging agents, independently of Rad52 role in Rad51 filament assembly. Importantly, we also demonstrated that Rad52 is essential for protecting Rad51 filaments against dissociation by the Srs2 DNA translocase. Our findings open new perspectives in the understanding of the role of Rad52 in eukaryotes.
    Mots-clés : AMIG, B3S, biochemistry, chemical biology, chromosomes, gene expression, genome stability, homologous recombination, Rad51, Rad52, S. cerevisiae, Saccharomyces cerevisiae, Srs2.

  • A. A. Nadaradjane, R. Guerois, et J. Andreani, « Protein-Protein Docking Using Evolutionary Information », in Protein Complex Assembly, vol. 1764, J. A. Marsh, Éd. New York, NY: Springer New York, 2018, p. 429-447.

  • E. Mileo, M. Ilbert, A. Barducci, P. Bordes, M. - P. Castanié-Cornet, C. Garnier, P. Genevaux, R. Gillet, P. Goloubinoff, F. Ochsenbein, G. Richarme, C. Iobbi-Nivol, M. - T. Giudici-Orticoni, B. Gontero, et O. Genest, « Emerging fields in chaperone proteins: A French workshop », Biochimie, vol. 151, p. 159-165, août 2018.
    Résumé : The "Bioénergétique et Ingénierie des Protéines (BIP)" laboratory, CNRS (France), organized its first French workshop on molecular chaperone proteins and protein folding in November 2017. The goal of this workshop was to gather scientists working in France on chaperone proteins and protein folding. This initiative was a great success with excellent talks and fruitful discussions. The highlights were on the description of unexpected functions and post-translational regulation of known molecular chaperones (such as Hsp90, Hsp33, SecB, GroEL) and on state-of-the-art methods to tackle questions related to this theme, including Cryo-electron microscopy, Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), simulation and modeling. We expect to organize a second workshop in two years that will include more scientists working in France in the chaperone field.
    Mots-clés : Aggregation, AMIG, B3S, Chaperone proteins, Folding/misfolding, Multifunctionality, Plasticity, Structural dynamics.

  • C. Nemoz, V. Ropars, P. Frit, A. Gontier, P. Drevet, J. Yu, R. Guerois, A. Pitois, A. Comte, C. Delteil, N. Barboule, P. Legrand, S. Baconnais, Y. Yin, S. Tadi, E. Barbet-Massin, I. Berger, E. Le Cams, M. Modesti, E. Rothenberg, P. Calsou, et J. B. Charbonnier, « XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining », Nature Structural & Molecular Biology, vol. 25, nᵒ 10, p. 971-980, oct. 2018.
    Résumé : The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to the ends of DNA double-strand breaks and recruits factors of the non-homologous end-joining (NHEJ) repair pathway through molecular interactions that remain unclear. We have determined crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBM motifs bind remote sites of the Ku80 alpha/beta domain. The X-KBM occupies an internal pocket formed by an unprecedented large outward rotation of the Ku80 alpha/beta domain. We observe independent recruitment of the APLF-interacting protein XRCC4 and of XLF to laser-irradiated sites via binding of A- and X-KBMs, respectively, to Ku80. Finally, we show that mutation of the X-KBM and A-KBM binding sites in Ku80 compromises both the efficiency and accuracy of end joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchor points to build the intricate interaction network required for NHEJ.
    Mots-clés : AMIG, B3S, c2orf13, complex, dependent protein-kinase, heterodimer, INTGEN, ligase-iv, pathway, stimulation, strand break repair, x-ray, xrcc4.

  • T. Q. Nguyen, M. Aumont-Niçaise, J. Andreani, C. Velours, M. Chenon, F. Vilela, C. Geneste, P. F. Varela, P. Llinas, et J. Ménétrey, « Characterization of the binding mode of JNK-interacting protein 1 (JIP1) to kinesin-light chain 1 (KLC1) », The Journal of Biological Chemistry, vol. 293, nᵒ 36, p. 13946-13960, juill. 2018.
    Résumé : JIP1 was first identified as scaffold protein for the MAP kinase JNK and is a cargo protein for the kinesin1 molecular motor. JIP1 plays significant and broad roles in neurons, mainly as a regulator of kinesin1-dependent transport, and is associated with human pathologies such as cancer and Alzheimer disease. JIP1 is specifically recruited by the kinesin-light chain 1 (KLC1) of kinesin1, but the details of this interaction are not yet fully elucidated. Here, using calorimetry, we extensively biochemically characterized the interaction between KLC1 and JIP1. Using various truncated fragments of the tetratricopeptide repeat (TPR) domain of KLC1, we narrowed down its JIP1-binding region and identified seven KLC1 residues critical for JIP1 binding. These ITC-based binding data enabled us to footprint the JIP1-binding site on KLC1-TPR. This footprint was used to uncover the structural basis for the marginal inhibition of JIP1 binding by the autoinhibitory LFP-acidic motif of KLC1, as well as for the competition between JIP1 and another cargo protein of kinesin1, the W-acidic motif-containing Alcadein-α. Also, we examined the role of each of these critical residues of KLC1 for JIP1 binding in the light of the previously reported crystal structure of the KLC1-TPR:JIP1 complex. Finally, sequence search in eukaryotic genomes identified several proteins, among which SH2D6 that exhibit similar motif to the KLC1-binding motif of JIP1. Overall, our extensive biochemical characterization of the KLC:JIP1 interaction, as well as identification of potential KLC1-binding partners improve the understanding of how this growing family of cargos is recruited to kinesin1 by KLC1.
    Mots-clés : Alcadein, AMIG, B3S, JNK-interacting protein 1, MIKICA, MST, PF, PIM, SH2D6, TorsinA, TPR domain, Y-acidic motif.

  • C. Quignot, J. Rey, J. Yu, P. Tufféry, R. Guerois, et J. Andreani, « InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs », Nucleic Acids Research, mai 2018.
    Résumé : Computational protein docking is a powerful strategy to predict structures of protein-protein interactions and provides crucial insights for the functional characterization of macromolecular cross-talks. We previously developed InterEvDock, a server for ab initio protein docking based on rigid-body sampling followed by consensus scoring using physics-based and statistical potentials, including the InterEvScore function specifically developed to incorporate co-evolutionary information in docking. InterEvDock2 is a major evolution of InterEvDock which allows users to submit input sequences - not only structures - and multimeric inputs and to specify constraints for the pairwise docking process based on previous knowledge about the interaction. For this purpose, we added modules in InterEvDock2 for automatic template search and comparative modeling of the input proteins. The InterEvDock2 pipeline was benchmarked on 812 complexes for which unbound homology models of the two partners and co-evolutionary information are available in the PPI4DOCK database. InterEvDock2 identified a correct model among the top 10 consensus in 29% of these cases (compared to 15-24% for individual scoring functions) and at least one correct interface residue among 10 predicted in 91% of these cases. InterEvDock2 is thus a unique protein docking server, designed to be useful for the experimental biology community. The InterEvDock2 web interface is available at
    Mots-clés : AMIG, B3S.

  • L. Shi, A. Cavagnino, J. - L. Rabefiraisana, N. Lazar, I. Li de la Sierra-Gallay, F. Ochsenbein, M. Valerio-Lepiniec, A. Urvoas, P. Minard, I. Mijakovic, et S. Nessler, « Structural Analysis of the Hanks-Type Protein Kinase YabT From Bacillus subtilis Provides New Insights in its DNA-Dependent Activation », Frontiers in Microbiology, vol. 9, p. 3014, 2018.
    Résumé : YabT is a serine/threonine kinase of the Hanks family from Bacillus subtilis, which lacks the canonical extracellular signal receptor domain but is anchored to the membrane through a C-terminal transmembrane helix. A previous study demonstrated that a basic juxtamembrane region corresponds to a DNA-binding motif essential for the activation of YabT trans-autophosphorylation. YabT is expressed during spore development and localizes to the asymmetric septum where it specifically phosphorylates essential proteins involved in genome maintenance, such as RecA, SsbA, and YabA. YabT has also been shown to phosphorylate proteins involved in protein synthesis, such as AbrB and Ef-Tu, suggesting a possible regulatory role in the progressive metabolic quiescence of the forespore. Finally, cross phosphorylations with other protein kinases implicate YabT in the regulation of numerous other cellular processes. Using an artificial protein scaffold as crystallization helper, we determined the first crystal structure of this DNA-dependent bacterial protein kinase. This allowed us to trap the active conformation of the kinase domain of YabT. Using NMR, we showed that the basic juxtamembrane region of YabT is disordered in the absence of DNA in solution, just like it is in the crystal, and that it is stabilized upon DNA binding. In comparison with its closest structural homolog, the mycobacterial kinase PknB allowed us to discuss the dimerization mode of YabT. Together with phosphorylation assays and DNA-binding experiments, this structural analysis helped us to gain new insights into the regulatory activation mechanism of YabT.
    Mots-clés : AMIG, autophosphorylation, B3S, bacteria, crystallization chaperone, crystallization chaperone, dimerization, evolution, FAAM, mechanism, MIP, pasta domain, pknb, regulator, regulatory mechanism, sequence, spore development, suggests, tyrosine phosphorylation.

  • S. P. Visweshwaran, P. A. Thomason, R. Guerois, S. Vacher, E. V. Denisov, L. A. Tashireva, M. E. Lomakina, C. Lazennec-Schurdevin, G. Lakisic, S. Lilla, N. Molinie, V. Henriot, Y. Mechulam, A. Y. Alexandrova, N. V. Cherdyntseva, I. Bièche, E. Schmitt, R. H. Insall, et A. Gautreau, « The trimeric coiled-coil HSBP1 protein promotes WASH complex assembly at centrosomes », The EMBO journal, mai 2018.
    Résumé : The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5β1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.
    Mots-clés : actin cytoskeleton, AMIG, Arp2/3 complex, B3S, cell migration and invasion, centrosome, multiprotein complex assembly.


  • C. Caillet-Saguy, A. Toto, R. Guerois, P. Maisonneuve, E. di Silvio, K. Sawyer, S. Gianni, et N. Wolff, « Regulation of the Human Phosphatase PTPN4 by the inter-domain linker connecting the PDZ and the phosphatase domains », Scientific Reports, vol. 7, nᵒ 1, p. 7875, août 2017.
    Résumé : Human protein tyrosine phosphatase non-receptor type 4 (PTPN4) has been shown to prevent cell death. The active form of human PTPN4 consists of two globular domains, a PDZ (PSD-95/Dlg/ZO-1) domain and a phosphatase domain, tethered by a flexible linker. Targeting its PDZ domain abrogates this protection and triggers apoptosis. We previously demonstrated that the PDZ domain inhibits the phosphatase activity of PTPN4 and that the mere binding of a PDZ ligand is sufficient to release the catalytic inhibition. We demonstrate here that the linker connecting the PDZ domain and the phosphatase domain is involved in the regulation of the phosphatase activity in both PDZ-related inhibition and PDZ ligand-related activation events. We combined bioinformatics and kinetic studies to decipher the role of the linker in the PTPN4 activity. By comparing orthologous sequences, we identified a conserved patch of hydrophobic residues in the linker. We showed that mutations in this patch affect the regulation of the PTPN4 bidomain indicating that the PDZ-PDZ ligand regulation of PTPN4 is a linker-mediated mechanism. However, the mutations do not alter the binding of the PDZ ligand. This study strengthens the notion that inter-domain linker can be of functional importance in enzyme regulation of large multi-domain proteins.
    Mots-clés : AMIG, B3S.

  • L. Celma, C. Corbinais, J. Vercruyssen, X. Veaute, I. L. de la Sierra-Gallay, R. Guérois, D. Busso, A. Mathieu, S. Marsin, S. Quevillon-Cheruel, et J. P. Radicella, « Structural basis for the substrate selectivity of Helicobacter pylori NucT nuclease activity », PLOS ONE, vol. 12, nᵒ 12, p. e0189049, déc. 2017.

  • Y. Duroc, R. Kumar, L. Ranjha, C. Adam, R. Guérois, K. Md Muntaz, M. - C. Marsolier-Kergoat, F. Dingli, R. Laureau, D. Loew, B. Llorente, J. - B. Charbonnier, P. Cejka, et V. Borde, « Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion », eLife, vol. 6, janv. 2017.
    Mots-clés : AMIG, B3S, biochemistry, Chromosomes, genes, INTGEN, Meiosis, mismatch repair, Recombination, S. cerevisiae.

  • A. Méneret, E. A. Franz, O. Trouillard, T. C. Oliver, Y. Zagar, S. P. Robertson, Q. Welniarz, R. J. M. K. Gardner, C. Gallea, M. Srour, C. Depienne, C. L. Jasoni, C. Dubacq, F. Riant, J. - C. Lamy, M. - P. Morel, R. Guérois, J. Andreani, C. Fouquet, M. Doulazmi, M. Vidailhet, G. A. Rouleau, A. Brice, A. Chédotal, I. Dusart, E. Roze, et D. Markie, « Mutations in the netrin-1 gene cause congenital mirror movements », The Journal of Clinical Investigation, sept. 2017.
    Résumé : Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.
    Mots-clés : AMIG, B3S.

  • T. Q. Nguyen, M. Chenon, F. Vilela, C. Velours, M. Aumont-Nicaise, J. Andreani, P. F. Varela, P. Llinas, et J. Ménétrey, « Structural plasticity of the N-terminal capping helix of the TPR domain of kinesin light chain », PloS One, vol. 12, nᵒ 10, p. e0186354, 2017.
    Résumé : Kinesin1 plays a major role in neuronal transport by recruiting many different cargos through its kinesin light chain (KLC). Various structurally unrelated cargos interact with the conserved tetratricopeptide repeat (TPR) domain of KLC. The N-terminal capping helix of the TPR domain exhibits an atypical sequence and structural features that may contribute to the versatility of the TPR domain to bind different cargos. We determined crystal structures of the TPR domain of both KLC1 and KLC2 encompassing the N-terminal capping helix and show that this helix exhibits two distinct and defined orientations relative to the rest of the TPR domain. Such a difference in orientation gives rise, at the N-terminal part of the groove, to the formation of one hydrophobic pocket, as well as to electrostatic variations at the groove surface. We present a comprehensive structural analysis of available KLC1/2-TPR domain structures that highlights that ligand binding into the groove can be specific of one or the other N-terminal capping helix orientations. Further, structural analysis reveals that the N-terminal capping helix is always involved in crystal packing contacts, especially in a TPR1:TPR1' contact which highlights its propensity to be a protein-protein interaction site. Together, these results underline that the structural plasticity of the N-terminal capping helix might represent a structural determinant for TPR domain structural versatility in cargo binding.
    Mots-clés : AMIG, Amino Acid Motifs, Amino Acid Sequence, Animals, B3S, Conserved Sequence, Humans, Ligands, Mice, Microtubule-Associated Proteins, MIKICA, Models, Molecular, PF, PIM, Protein Conformation, alpha-Helical, Protein Domains.

  • P. V. Sauer, J. Timm, D. Liu, D. Sitbon, E. Boeri-Erba, C. Velours, N. Mücke, J. Langowski, F. Ochsenbein, G. Almouzni, et D. Panne, « Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1 », eLife, vol. 6, mars 2017.
    Mots-clés : AMIG, B3S, PF, PIM.

  • J. Yu, J. Andreani, F. Ochsenbein, et R. Guerois, « Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35: Coevolution in CAPRI Rounds 28-35 », Proteins: Structure, Function, and Bioinformatics, vol. 85, nᵒ 3, p. 378-390, 2017.


  • M. Biondini, A. Sadou-Dubourgnoux, P. Paul-Gilloteaux, G. Zago, M. D. Arslanhan, F. Waharte, E. Formstecher, M. Hertzog, J. Yu, R. Guerois, A. Gautreau, G. Scita, J. Camonis, et M. C. Parrini, « Direct interaction between exocyst and Wave complexes promotes cell protrusions and motility », Journal of Cell Science, vol. 129, nᵒ 20, p. 3756-3769, oct. 2016.
    Résumé : Coordination between membrane trafficking and actin polymerization is fundamental in cell migration, but a dynamic view of the underlying molecular mechanisms is still missing. The Rac1 GTPase controls actin polymerization at protrusions by interacting with its effector, the Wave regulatory complex (WRC). The exocyst complex, which functions in polarized exocytosis, has been involved in the regulation of cell motility. Here, we show a physical and functional connection between exocyst and WRC. Purified components of exocyst and WRC directly associate in vitro, and interactions interfaces are identified. The exocyst-WRC interaction is confirmed in cells by co-immunoprecipitation and is shown to occur independently of the Arp2/3 complex. Disruption of the exocyst-WRC interaction leads to impaired migration. By using time-lapse microscopy coupled to image correlation analysis, we visualized the trafficking of the WRC towards the front of the cell in nascent protrusions. The exocyst is necessary for WRC recruitment at the leading edge and for resulting cell edge movements. This direct link between the exocyst and WRC provides a new mechanistic insight into the spatio-temporal regulation of cell migration.
    Mots-clés : AMIG, B3S, Exocyst, Motility, Ral, Wave.

  • H. Delattre, O. Souiai, K. Fagoonee, R. Guerois, et M. - A. Petit, « Phagonaute: A web-based interface for phage synteny browsing and protein function prediction », Virology, vol. 496, p. 42-50, 2016.

  • M. F. Lensink, S. Velankar, A. Kryshtafovych, S. - Y. Huang, D. Schneidman-Duhovny, A. Sali, J. Segura, N. Fernandez-Fuentes, S. Viswanath, R. Elber, S. Grudinin, P. Popov, E. Neveu, H. Lee, M. Baek, S. Park, L. Heo, G. Rie Lee, C. Seok, S. Qin, H. - X. Zhou, D. W. Ritchie, B. Maigret, M. - D. Devignes, A. Ghoorah, M. Torchala, R. A. G. Chaleil, P. A. Bates, E. Ben-Zeev, M. Eisenstein, S. S. Negi, Z. Weng, T. Vreven, B. G. Pierce, T. M. Borrman, J. Yu, F. Ochsenbein, R. Guerois, A. Vangone, J. P. G. L. M. Rodrigues, G. van Zundert, M. Nellen, L. Xue, E. Karaca, A. S. J. Melquiond, K. Visscher, P. L. Kastritis, A. M. J. J. Bonvin, X. Xu, L. Qiu, C. Yan, J. Li, Z. Ma, J. Cheng, X. Zou, Y. Shen, L. X. Peterson, H. - R. Kim, A. Roy, X. Han, J. Esquivel-Rodriguez, D. Kihara, X. Yu, N. J. Bruce, J. C. Fuller, R. C. Wade, I. Anishchenko, P. J. Kundrotas, I. A. Vakser, K. Imai, K. Yamada, T. Oda, T. Nakamura, K. Tomii, C. Pallara, M. Romero-Durana, B. Jiménez-García, I. H. Moal, J. Férnandez-Recio, J. Y. Joung, J. Y. Kim, K. Joo, J. Lee, D. Kozakov, S. Vajda, S. Mottarella, D. R. Hall, D. Beglov, A. Mamonov, B. Xia, T. Bohnuud, C. A. Del Carpio, E. Ichiishi, N. Marze, D. Kuroda, S. S. Roy Burman, J. J. Gray, E. Chermak, L. Cavallo, R. Oliva, A. Tovchigrechko, et S. J. Wodak, « Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment: Prediction of Homo and Heteroprotein Complexes by Protein Docking and Modeling », Proteins: Structure, Function, and Bioinformatics, vol. 84, p. 323-348, 2016.

  • P. Llinas, M. Chenon, T. Q. Nguyen, C. Moreira, A. de Régibus, A. Coquard, M. J. Ramos, R. Guérois, P. A. Fernandes, et J. Ménétrey, « Structure of a truncated form of leucine zipper II of JIP3 reveals an unexpected antiparallel coiled-coil arrangement », Acta Crystallographica Section F Structural Biology Communications, vol. 72, nᵒ 3, p. 198-206, mars 2016.

  • J. Yu et R. Guerois, « PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets », Bioinformatics (Oxford, England), vol. 32, nᵒ 24, p. 3760-3767, déc. 2016.
    Résumé : MOTIVATION: Protein-protein docking methods are of great importance for understanding interactomes at the structural level. It has become increasingly appealing to use not only experimental structures but also homology models of unbound subunits as input for docking simulations. So far we are missing a large scale assessment of the success of rigid-body free docking methods on homology models. RESULTS: We explored how we could benefit from comparative modelling of unbound subunits to expand docking benchmark datasets. Starting from a collection of 3157 non-redundant, high X-ray resolution heterodimers, we developed the PPI4DOCK benchmark containing 1417 docking targets based on unbound homology models. Rigid-body docking by Zdock showed that for 1208 cases (85.2%), at least one correct decoy was generated, emphasizing the efficiency of rigid-body docking in generating correct assemblies. Overall, the PPI4DOCK benchmark contains a large set of realistic cases and provides new ground for assessing docking and scoring methodologies. AVAILABILITY AND IMPLEMENTATION: Benchmark sets can be downloaded from CONTACT: guerois@cea.frSupplementary information: Supplementary data are available at Bioinformatics online.
    Mots-clés : AMIG, B3S.

  • J. Yu, M. Vavrusa, J. Andreani, J. Rey, P. Tufféry, et R. Guerois, « InterEvDock: a docking server to predict the structure of protein–protein interactions using evolutionary information », Nucleic Acids Research, vol. 44, nᵒ W1, p. W542-W549, juill. 2016.


--- Exporter la sélection au format


Publications majeures avant 2015

1. Richet N, Liu D, Legrand P, Velours C, Corpet A, Gaubert A, Bakail M, Moal-Raisin G, Guerois R, Compper C, Besle A, Guichard B, Almouzni G, Ochsenbein F (2015) Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res. In press.

1. Lisboa J, Andreani J, Sanchez D, Boudes M, Collinet B, Liger D, van Tilbeurgh H, Guerois R*, Cheruel S* (2014) Molecular determinants of the DprA/RecA interaction for nucleation on ssDNA. Nucleic Acids Res 42(11):7395-408. (* co-last authors)

2. Pietrobon V, Fréon K, Hardy J, Costes A, Iraqui I, Ochsenbein F, Lambert SA (2014) The chromatin assembly factor 1 promotes Rad51-dependent template switches at replication forks by counteracting D-loop disassembly by the RecQ-type helicase Rqh1. PLoS Biol 12(10):e1001968.

3. Meurisse J, Bacquin A, Richet N, Charbonnier JB, Ochsenbein F, Peyroche A (2014) Hug1 is an intrinsically disordered protein that inhibits ribonucleotide reductase activity by directly binding Rnr2 subunit. Nucleic Acids Res. 42(21):13174-85.

4. Andreani J, Faure G, Guerois R (2013) InterEvScore : a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution. Bioinformatics 29 : 1742-1749.

5. Jiao Y*, Seeger K*, Lautrette A, Gaubert A, Mousson F, Guerois R, Mann C, Ochsenbein F (2012) Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction. Proc Natl Acad Sci U S A 109 : 2866-2871

6. Barrault MB, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier JB, Le Du MH, Guerois R, Ochsenbein F*, Peyroche A* (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci U S A 109 : E1001-1010 (* co-last authors)

7. Faure G, Andreani J, Guerois R (2012) InterEvol database : exploring the structure and evolution of protein complex interfaces. Nucleic Acids Res 40 : D847-856

8. Lopes A, Amarir-Bouhram J, Faure G, Petit MA, Guerois R (2010) Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res 38 : 3952-3962

9. Madaoui H, Guerois R (2008) Coevolution at protein complex interfaces can be detected by the complementarity trace with important impact for predictive docking. Proc Natl Acad Sci U S A 105 : 7708-7713

publié le , mis à jour le