Nos tutelles

Nos partenaires

Accueil > Départements > Biologie Cellulaire > Anne-Marie TASSIN : Biogenèse et fonction des structures centriolaires et ciliaires

Publications de l’équipe


  • M. R. Fassad, A. Shoemark, P. le Borgne, F. Koll, M. Patel, M. Dixon, J. Hayward, C. Richardson, E. Frost, L. Jenkins, T. Cullup, E. M. K. Chung, M. Lemullois, A. Aubusson-Fleury, C. Hogg, D. R. Mitchell, A. - M. Tassin, et H. M. Mitchison, « C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia », American Journal of Human Genetics, vol. 102, nᵒ 5, p. 956-972, mai 2018.
    Résumé : Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD.
    Mots-clés : BIOCELL, BIOCIL, dynein, intraflagellar transport, Kartagener syndrome, mutation, Paramecium, primary ciliary dyskinesia.

  • M. R. Fassad, A. Shoemark, M. Legendre, R. A. Hirst, F. Koll, P. le Borgne, B. Louis, F. Daudvohra, M. P. Patel, L. Thomas, M. Dixon, T. Burgoyne, J. Hayes, A. G. Nicholson, T. Cullup, L. Jenkins, S. B. Carr, P. Aurora, M. Lemullois, A. Aubusson-Fleury, J. - F. Papon, C. O'Callaghan, S. Amselem, C. Hogg, E. Escudier, A. - M. Tassin, et H. M. Mitchison, « Mutations in Outer Dynein Arm Heavy Chain DNAH9 Cause Motile Cilia Defects and Situs Inversus », American Journal of Human Genetics, vol. 103, nᵒ 6, p. 984-994, déc. 2018.
    Résumé : Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.
    Mots-clés : BIOCELL, BIOCIL, diagnosis, DNAH9, dynein, dyskinesia, genes, genetics, motile cilia, mutation, primary ciliary dyskinesia, situs inversus, tomography.

  • L. Shi, F. Koll, O. Arnaiz, et J. Cohen, « The Ciliary Protein IFT57 in the Macronucleus of Paramecium », The Journal of Eukaryotic Microbiology, vol. 65, nᵒ 1, p. 12-27, janv. 2018.
    Résumé : The intraflagellar transport IFT57 protein is essential for ciliary growth and maintenance. Also known as HIPPI, human IFT57 can be translocated to the nucleus via a molecular partner of the Huntingtin, Hip1, inducing gene expression changes. In Paramecium tetraurelia, we identified four IFT57 genes forming two subfamilies IFT57A/B and IFT57C/D arising from whole genome duplications. The depletion of proteins of the two subfamilies induced ciliary defects and IFT57A and IFT57C localized in basal bodies and cilia. We observed that IFT57A, but not IFT57C, is also present in the macronucleus and able to traffic toward the developing anlage during autogamy. Analysis of chimeric IFT57A-IFT57C-GFP-tagged proteins allowed us to identify a region of IFT57A necessary for nuclear localization. We studied the localization of the unique IFT57 protein of Paramecium caudatum, a species, which diverged from P. tetraurelia before the whole genome duplications. The P. caudatumIFT57C protein was excluded from the nucleus. We also analyzed whether the overexpression of IFT57A in Paramecium could affect gene transcription as the human protein does in HeLa cells. The expression of some genes was indeed affected by overexpression of IFT57A, but the set of affected genes poorly overlaps the set of genes affected in human cells.
    Mots-clés : ANGE, BIOCELL, BIOCIL, cilia, DBG, HIPPI, IFT57 /HIPPI, intraflagellar transport, intraflagellar transport (IFT), Macronucleus, MICMAC, Paramecium.


  • A. Aubusson-Fleury, G. Balavoine, M. Lemullois, K. Bouhouche, J. Beisson, et F. Koll, « Centrin diversity and basal body patterning across evolution: new insights from Paramecium », Biology Open, avr. 2017.
    Résumé : First discovered in unicellular eukaryotes, centrins play crucial roles in basal body duplication and anchoring mechanisms. While the evolutionary status of the founding members of the family, Centrin2/Vfl2 and Centrin3/cdc31 has long been investigated, the evolutionary origin of other members of the family has received less attention. Using a phylogeny of ciliate centrins, we identify two other centrin families, the ciliary centrins and the centrins present in the contractile filaments (ICL centrins). In this paper, we carry on the functional analysis of still not well known centrins, the ICL1e subfamily identified in Paramecium, and show their requirement for correct basal body anchoring through interactions with Centrin2 and Centrin3. Using Paramecium as well as an Eukaryote-wide sampling of centrins from completely sequenced genomes, we revisited the evolutionary story of centrins. Their phylogeny shows that the centrins associated with the ciliate contractile filaments are widespread in eukaryotic lineages and could be as ancient as Centrin2 and Centrin3.
    Mots-clés : basal body anchoring, basal body assembly, BIOCELL, BIOCIL, centrin evolution, Ciliary centrins, ciliated epithelia polarity.

  • H. Bengueddach, M. Lemullois, A. Aubusson-Fleury, et F. Koll, « Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3 », Cilia, vol. 6, nᵒ 1, 2017.

  • M. J. Domingues, J. Martinez-Sanz, L. Papon, L. Larue, L. Mouawad, et J. Bonaventure, « Structure-based mutational analysis of ICAT residues mediating negative regulation of β-catenin co-transcriptional activity », PloS One, vol. 12, nᵒ 3, p. e0172603, 2017.
    Résumé : ICAT (Inhibitor of β-CAtenin and TCF) is a small acidic protein that negatively regulates β-catenin co-transcriptional activity by competing with TCF/LEF factors in their binding to β-catenin superhelical core. In melanoma cells, ICAT competes with LEF1 to negatively regulate the M-MITF and NEDD9 target genes. The structure of ICAT consists of two domains: the 3-helix bundle N-terminal domain binds to β-catenin Armadillo (Arm) repeats 10-12 and the C-terminal tail binds to Arm repeats 5-9. To elucidate the structural mechanisms governing ICAT/β-catenin interactions in melanoma cells, three ICAT residues Y15, K19 and V22 in the N-terminal domain, contacting hydrophobic β-catenin residue F660, were mutated and interaction was assessed by immunoprecipitation. Despite the moderate hydrophobicity of the contact, its removal completely abolished the interaction. In the ICAT C-terminal tail consensus sequence, neutralization of the electrostatic interactions between residues D66, E75 and β-catenin residues K435, K312, coupled to deletion of the hydrophobic contact between F71 and β-catenin R386, markedly reduced, but failed to abolish the ICAT-mediated negative regulation of M-MITF and NEDD9 promoters. We conclude that in melanoma cells, anchoring of ICAT N-terminal domain to β-catenin through the hook made by residue F660, trapped in the pincers formed by ICAT residues Y15 and V22, is crucial for stabilizing the ICAT/β-catenin complex. This is a prerequisite for binding of the consensus peptide to Arm repeats 5-9 and competition with LEF1. Differences between ICAT and LEF1 in their affinity for β-catenin may rely on the absence in ICAT of hydrophilic residues between D66 and F71.
    Mots-clés : BIOCELL, BIOCIL.

  • S. Trépout, A. - M. Tassin, S. Marco, et P. Bastin, « STEM tomography analysis of the trypanosome transition zone », Journal of Structural Biology, déc. 2017.
    Résumé : The protist Trypanosoma brucei is an emerging model for the study of cilia and flagella. Here, we used scanning transmission electron microscopy (STEM) tomography to describe the structure of the trypanosome transition zone (TZ). At the base of the TZ, nine transition fibres irradiate from the B microtubule of each doublet towards the membrane. The TZ adopts a 9+0 structure throughout its length of ∼300 nm and its lumen contains an electron-dense structure. The proximal portion of the TZ has an invariant length of 150 nm and is characterised by a collarette surrounding the membrane and the presence of electron-dense material between the membrane and the doublets. The distal portion exhibits more length variation (from 55 to 235 nm) and contains typical Y-links. STEM analysis revealed a more complex organisation of the Y-links compared to what was reported by conventional transmission electron microscopy. Observation of the very early phase of flagellum assembly demonstrated that the proximal portion and the collarette are assembled early during construction. The presence of the flagella connector that maintains the tip of the new flagellum to the side of the old was confirmed and additional filamentous structures making contact with the membrane of the flagellar pocket were also detected. The structure and potential functions of the TZ in trypanosomes are discussed, as well as its mode of assembly.
    Mots-clés : BIOCELL, BIOCIL, Cilia and Flagella, Cytoskeleton, Scanning Transmission Electron Microscopy (STEM), Tomography, Transition zone, Trypanosome, Y-links.


--- Exporter la sélection au format

Arnaiz O, Cohen J, Tassin AM, Koll F. (2014) Remodeling Cildb, a popular database for cilia and links for ciliopathies. Cilia 3 : 9. PMID : 25422781
Eguether T, Ermolaeva MA, Zhao Y, Bonnet MC, Jain A, Pasparakis M, Courtois G, Tassin AM. (2014) The deubiquitinating enzyme CYLD controls apical docking of basal bodies in ciliated epithelial cells. Nature Communications. 5:4585. PMID : 25134987

Aubusson-Fleury A, Bricheux G, Damaj R, Lemullois M, Coffe G, Donnadieu F, Koll F, Viguès B, Bouchard P. (2013) Epiplasmins and epiplasm in paramecium : the building of a submembraneous cytoskeleton. Protist. 164 : 451-69. PMID : 23837920
Jerka-Dziadosz M, Koll F, Włoga D, Gogendeau D, Garreau de Loubresse N, Ruiz F, Fabczak S, Beisson J. (2013) A Centrin3-dependent, transient appendage of the mother basal body guides the positioning of the daughter basal body in Paramecium. Protist. 164 : 352-68. PMID : 23261281

Aubusson-Fleury A, Lemullois M, de Loubresse NG, Laligné C, Cohen J, Rosnet O, Jerka-Dziadosz M, Beisson J, Koll F. (2012) The conserved centrosomal protein FOR20 is required for assembly of the transition zone and basal body docking at the cell surface. J Cell Sci 125 4395-4404. PMID : 2271834
Valentine MS, Rajendran A, Yano J, Weeraratne SD, Beisson J, Cohen J, Koll F, Van Houten J. (2012). Paramecium BBS genes are key to channel function in motile cilia. Cilia 1:16. PMID : 23351336

Gogendeau D, Hurbain I, Raposo G, Cohen J, Koll F, Basto R. (2011) Sas-4 proteins are required during basal body duplication in Paramecium. Mol Biol Cell, 22 : 1035-44. PMID : 21289083

Guichard P, Chrétien D, Marco S, Tassin AM. (2010). Procentriole assembly revealed by cryo-electron tomography. EMBO J. 29:1565-72. PMID : 20339347
Arnaiz O, Gout JF, Bétermier M, Bouhouche K, Cohen J, Duret L, Kapusta A, Meyer E, Sperling L. (2010) Gene expression in a paleopolyploid : a transcriptome resource for the ciliate Paramecium tetraurelia. BMC Genomics, 11:547. PMID : 20932287
Jerka-Dziadosz M, Gogendeau D, Klotz C, Cohen J, Beisson J, Koll F. (2010) Basal body duplication in Paramecium : the key role of Bld10 in assembly and stability of the cartwheel. Cytoskeleton (Hoboken) 67 : 161-71. PMID : 20217679
Laligné C, Klotz C, Garreau de Loubresse N, Lemullois M, Hori M, Laurent FX, Papon JF, Louis B, Cohen J, Koll F. (2010) Bug22p, a conserved centrosomal/ciliary protein also present in higher plants is required for an effective ciliary stroke in Paramecium. Eukaryot Cell, 9 :645-55. PMID : 20118210

Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Koll F, Cohen J. (2009). Cildb : a knowledgebase for centrosomes and cilia. Database, doi:10.1093/database/bap022. PMID : 20428338

In collaboration
Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Goût JF, Prajer M, Potekhin A, Przybòs E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury JM, Sperling L, Duharcourt S, Meyer E. (2014) Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 509 : 447-52. PMID : 24805235
Kutomi O, Hori M, Ishida M, Tominaga T, Kamachi H, Koll F, Cohen J, Yamada N, Noguchi M. (2012. Outer dynein arm light chain 1 is essential for controlling the ciliary response to cyclic AMP in Paramecium tetraurelia. Eukaryot Cell 11 : 645-653. PMID : 22427431

publié le , mis à jour le