Areas of active research in this field include the mechanisms of DNA transport and processing, regulation of competence and evolutionary function of competence (genome plasticity, antibiotic resistance spreading…). In our young team, we investigate all these aspects in different historical or new model organisms.
In B. subtilis, our aim will be to complete the important knowledge accumulated over the years. Our priorities are to identify and characterize new actors involved in competence regulation and DNA binding/transport during transformation. All this knowledge will provide the ideal framework to study new pathogenic model organisms (project 1).
Among the new model organisms, we will first focus on S. aureus, for which a lot remains to be discovered (project 2). However, the limited information available already stresses the importance of studying this physiological differentiation in S. aureus.
Finally, we plan to extend these investigations in order to control and engineer genetic transformation in non-naturally transformable bacteria, with industrial and/or medical interest. The recent progress in synthetic biology should allow us to transfer and express, in these bacteria, all the genes necessary to ensure natural transformation (project 3).